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Abstra
t

All living things �struggle for existen
e� as they 
ompete with other organisms

over limiting resour
es. Understanding how the diversity and dynami
s of living

systems are shaped by 
ompetition 
an help us better understand evolutionary

problems of altruism, 
onservation management of 
ompeting spe
ies, and even

e
onomi
 poli
y making to promote produ
tive 
ompetition in free markets.

This thesis examines 
ompetition and its e�e
ts on diversity and dynami
s in

four systems: the slime mold Di
tyostelium dis
oideum, predator-prey systems

su
h as wolves in Yellowstone, the human mi
robiome and the S&P 500. Diver-

sity in slime molds may be maintained despite 
ompetition for spa
e in the spore


apsules if the natural habitat of slime molds is variable in spa
e and time; re-

sour
e availability might mediate quorum sensing, and su
h mole
ular swit
hes

and bet-hedging 
an be advantageous over 
ompetitors without su
h plasti
ity.

Competition between prey 
an be mediated by predators, but the ability of

predators to stabilize prey 
ommunities depends on the size of the 
ommunity

relative to the atta
k rate of the predator, implying that some predators need

espe
ially large reserves to exhibit their full e
ologi
al e�e
ts. Snapshots of the

human mi
robiome and the S&P 500 might suggest that they 
ould arise from

neutral 
ompetition, but time-series analysis reveals that many seemingly neu-

tral 
ommunities may exhibit non-neutral dynami
s. Understanding patterns of

diversity and dynami
s of adaptive systems requires understanding 
ompetition

and 
oexisten
e in an unpredi
table world.
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Prefa
e

The world is a �nite, unpredi
table vat of resour
es. All living things try to a
-

quire resour
es and reprodu
e, but not all organisms will su

eed. All of life �nds

itself in a �struggle for existen
e� [12℄ - 
ompeting with other members of the

same spe
ies or with other spe
ies in the same trophi
 guild. When Gause grew

mixed 
ultures of yeast in 
ompetition over the same resour
es, the �tter vari-

ants 
ompetitively ex
luded the less �t variants; from these experiments, Gause

hypothesized that 
ompetition 
leared 
ommunities of any overgrowth of ex
es-

sive diversity [13℄. Lotka-Volterra style di�erential equation models of organisms

in 
ompetition over limiting resour
es 
on�rmed that spe
ies 
oexisten
e is ten-

uous and 
ompetitive ex
lusion may be a likely out
ome of 
ompetition [14℄.

This led to the expli
it statement of the 
ompetitive ex
lusion prin
iple in 1960

[15℄: two spe
ies in 
ompetition over the same limiting resour
e 
annot 
oexist.

However, if 
ompetitive ex
lusion is so easily obtained in models, then why

do we see su
h a remarkable diversity of life?! In 1961, just one year after the


ompetitive ex
lusion prin
iple was stated, Hut
hinson [18℄ pointed out that

many spe
ies of plankton 
oexist over just a few limiting resour
es - how is this

possible? If tropi
al trees 
ompete over just a few limiting resour
es - spa
e,

water, nitrogen, phosphorus, and a few others - how over 220 spe
ies of trees


oexist in the meager 50 ha plot of Barro Colorado Island? How 
an 8 large

ungulate spe
ies 
oexist in Yellowstone while 
ompeting over the same forage

and through shared predators? How do hundreds of operational taxonomi
 units

of ba
teria 
oexist on our body? Why have we not seen 
ompetitive ex
lusion

in these systems; why is there not one super-tree that dominates Amazonia, a

super-moose that dominates Yellowstone, or a super-bug that dominates our

large intestines?

In the years sin
e Hut
hinson's paradox of the plankton, e
ologists have


arved out many me
hanisms that maintain 
oexisten
e despite 
ompetition,

me
hanisms that range from Ma
Arthur's ni
he partitioning in warblers [23, 22℄

or Janzen and Connell's suites of distant-dependent spe
ialist predators [19, 6℄ to

Paine and Levin's rarefa
tion-like disturban
es in intertidal lands
apes [21, 25℄

to spatial stru
ture [1℄ and spatial and temporal variation in environments [5℄,

and more.

It's safe to say that the paradox of the plankton is no longer a paradox. In-

stead of being 
onfused by the diversity of plankton or tropi
al trees, e
ologists

now have the opposite problem: given the myriad possible me
hanisms for 
o-

existen
e and mediation of 
ompetition, whi
h ones are most important in our

study system? How does the suite of stabilizing me
hanisms [4℄ at play in our

system a�e
t our management of natural systems? In whi
h other 
ompetitive

systems are analogous stabilizing me
hanisms at play, and how 
an knowlege of

stabilization in e
ology inform our management of other 
ompetitive systems?

For instan
e, we �nd a suite of analogous problems of 
ompetition and 
oexis-

ten
e in human systems - of 
ultures in so
iology or 
ompanies in e
onomi
s:

sin
e 
ompanies in a market 
ompete over a �nite number of 
ustomers or a
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�nite amount of investment 
apital, �tter 
ompanies 
an expand and advertise

and, in theory, 
ompetitively ex
lude less su

essful 
ompanies. How 
an in-

sights from e
ology of non-human life generalize to our understanding of human


ompetition? Su
h knowledge of human 
ompetition would a�e
t our e
onomi


poli
y making and portfolio management - when human resour
es be
ome limit-

ing, shares might no longer grow exponentially, and so prin
iples of 
ompetition

and evolution of 
ompetitive systems may be needed to a

urately pri
e options

and other �nan
ial derivatives [2℄. This thesis examines some of these modern

questions of 
ompetition and 
oexisten
e in a �nite, sto
hasti
 world in systems

ranging from ungulates in yellowstone or arthropods on small islands in the

Bahamas, to slime molds, gut ba
teria, and large 
ap 
ompanies in the S&P

500.

The �rst 
hapter explores a paradoxi
al 
oexisten
e of many genotypes of

the slime mold Di
tyostelium dis
oideum in 
ompetition for limiting spa
e in

the fruiting body. We show that multiple genotypes 
an 
oexist in a pat
hy

environment with spatial and temporal variation in the time between resour
e

replenishment; instead of a problem of altruism arising in 
ompetition over spa
e

in the spore 
apsule, there may be dispersal-dorman
y tradeo�s that 
an explain

the persisten
e of some so-
alled loner 
ells that �
hoose� not to aggregate into

the spore 
apsule but instead remain dormant; a mosai
 of environments that

vary in their expe
ted rate of resour
e arrival 
an explain many genotypes with

di�erent degrees of investment in dispersal vs. dorman
y. We �nish with a

dis
ussion of future empiri
al investigations that 
an test our hypothesis and

elu
idate how exa
tly slime molds with the same genotype might �
hoose� to

aggregate or to ignore an autoindu
ing signal from other 
ells hoping to form a

quorum. If su
h 
onditional quorum a
tivation does exist, whi
h I hypothesize

may be 
o-mediated by lo
al resour
e availability, it would have impli
ations

for the evolution of quorum sensing in other model organisms su
h as Vibrio

spe
ies.

The se
ond 
hapter examines how stabilizing for
es su
h as prey-swit
hing

predation - whi
h maintain 
oexisten
e in di�erential equation models - a�e
t

small populations prone to �u
tuations in population size from variation in fe-


undity, lifespan, intraguild 
ompetitive intera
tions, and predatory en
ounters.

Our main result is obvious in hindsight: by killing prey, predators redu
e mean

population sizes of prey, and too high of atta
k rates - even atta
k rates by �sta-

bilizing� predators - 
an drive �nite prey populations to rarity and eventually

extin
tion. Be
ause the probability of a spe
ies be
oming rare is dire
tly related

to prey 
ommunity size, the e�e
t of predation on prey diversity depends on the

habitat size and intensity of 
ompetition among prey. A parti
ular stabilizing

predator may be bene�
ial for diversity at large spatial s
ales yet may 
lob-

ber diversity at small s
ales. We show that the impa
t of frequen
y-dependent

killing of prey 
an be understood through statisti
al properties of �u
tuating

prey 
ommunities: by suppressing �u
tuations in relative abundan
e, stabiliz-

ing for
es redu
e negative 
ovarian
e that arises from dire
t 
ompetition and

thereby redu
e the risk of rarity of prey. High atta
k rates relative to 
ommu-

nity size 
an redu
e the mean abundan
e more than they in
rease the 
ovarian
e
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in population size; tension between in
reases in 
ovarian
e and de
reases in the

mean abundan
e of prey populations determines the observed e�e
t of preda-

tion on prey diversity. These results 
hange our thinking about 
ompetition,

stabilizing for
es, and 
oexisten
e in real study systems were populations are

�nite, moving us beyond systems of di�erential equations towards a broader,

trophi
 island-biogeographi
 perspe
tive that 
onsiders the sto
hasti
 �u
tua-

tions of 
ommunities in the presen
e of stabilizing intera
tions. This trophi


island biogeographi
 perspe
tive and the s
ale-dependen
e of 
oexisten
e for

a given food web is espe
ially relevant to modern 
onservation biology where

the trophi
 downgrading [7℄ and habitat fragmentation [8℄ are simultaneously


hanging the stabilizing for
es and the 
ommunity sizes in natural systems.

The third and �nal 
hapter makes a solid epistemologi
al stride by using

time-series data for hypothesis-testing a parti
ular model of 
ompetitive dynam-

i
s - the Wright Fisher Pro
ess [11, 29℄, also known to e
ologists and population

geneti
ists as Neutral Theory. The Wright-Fisher pro
ess has been used as a

null model for neutral 
ompetition in populations of genes [20℄, 
ommunities

of 
anopy trees [16℄, and even the market weights of 
ompanies in 
ompeti-

tion over �nite investment 
apital [10, 26℄, and it's been argued that neutrality

may be a 
ommon o

urren
e in natural systems as any large deviation from

neutrality may likely result in qui
k 
ompetitive ex
lusion [17℄. From Tajima's

D [28℄ to Fay & Wu's H [9℄ to tests of spe
ies-abundan
e distributions [24℄,

hypothesis-tests of neutral 
ompetition are used to un
over genes that have un-

dergone sele
tion, and similar tests in e
ology and e
onomi
s may reveal ni
he

stru
ture within trophi
 guilds or e
onomi
 se
tors. Existing hypothesis tests

of neutral 
ompetition use stati
 snapshots of the frequen
ies of the di�erent


ompeting spe
ies, alleles or 
ompanies; the third 
hapter of my thesis presents

tools for the hypothesis testing of neutral 
ompetition with time-series datasets.

The utility of the tools developed is illustrated �rst by simulation and then by

analyzing data from a time-series dataset of the human mi
robiome [3℄ and the

day-end pri
es for 451 
ompanies in the S&P 500 from 2000 to 2005. These

tests of real e
ologi
al and e
onomi
 time-series suggest that no one model 
an

a

ount for the sto
hasti
 dynami
s of real 
omplex-adaptive systems: some


ommunities are di�
ult to distinguish from a Wright-Fisher pro
ess, whereas

others su
h as one male's tongue mi
robiome and the S&P 500 market weights,

exhibit markedly non-neutral dynami
s. Fo
using on the example of the male's

tongue mi
robiota, I illustrate how the tools provided here for time-series anal-

ysis fa
ilitate the 
onstru
tion of suitable alternative models for the 
ompetitive

dynami
s of these non-neutral systems.

Taken together, these 
hapters span a wide spe
trum of 
ompetitive dy-

nami
s - resour
e 
ompetition in a pat hy environment, apparent 
ompetition

of prey with a 
ommon generalist predator, and neutral 
ompetition in more

general 
ompetitive systems. At the heart of all of these studies is a limit-

ing resour
e - food for Di
tyostelium; food, spa
e, intraguild aggression and a

shared, generalist predator for prey; or stri
t zero-sum 
ompetition for spa
e or

investment 
apital - and these studies have examined various 
onsequen
es for

the diversity, dynami
s, and empiri
al studies of the organisms in 
ompetition.

iv



Di
tyostelium diversity 
an be stabilized by spatial and temporal variability

in resour
e pulses. Ungulates in Yellowstone 
an be stabilized by wolves, but

whether or not wolves in
rease the long-term persisten
e of ungulates depends


ru
ially on the size of habitat - and it's possible that even Yellowstone may not

be big enough for wolves, but larger habitats or well-
onne
ted blo
ks of habitat

may be required. The failure of introdu
ed anoles on the Bahamas to maintain

arthropod diversity 
ould be due to the small size of the islands to whi
h they

were introdu
ed [27℄. The S&P 500 and the ba
teria on the tongue of one parti
-

ular male are in 
ompetition for limiting resour
es, but evolution has not led to

neutrality among 
ompetitors in these systems over the times
ales investigated;

instead, there may be signatures of trust-busting poli
ies or in
umbent e�e
ts or

rare-spe
ies advantages in these systems. Understanding the non-neutral 
om-

petition in these systems has impli
ations ranging from e
onomi
 poli
y making

to portfolio management and and probioti
 pharma
okineti
s.

Looking ba
k, these proje
ts are motivated by my interest in the assem-

bly of 
ompetitive systems over evolutionary times
ales - how do slime molds

evolve under the tension between solitary life and 
ooperative dispersal? How

are food webs assembled - does evolution stabilize or destabilize food webs, and,

if so, how e�e
tive are these stabilizing for
es for 
ommunities of di�erent size?

Do spe
ies 
ompetitively ex
lude one another until they are e�e
tively neu-

tral, as Hubbell hypothesized, or are general 
lasses of non-neutral 
ompetition

underlying patterns of biogeography (spe
ies-abundan
e distributions, spe
ies-

area relationships, the distribution of times to most-re
ent 
ommon an
estors

of spe
ies in a region, et
.)?

Looking forward, this thesis is my �rst step in a long journey to understand

how 
ompetition stru
tures natural systems, how our understanding of evolu-

tion in 
ompetitive systems 
an be utilized to improve the 
ompetitiveness of,

say, a probioti
 designed to establish a stable population and deliver la
tase to

the host, and how we 
on
eptualize evolution in this world with Russian dolls

of self-repli
ating things, with Di
tyostelium straddling the major evolutionary

transition between single- and multi-
ellularity, with prey spe
ies in 
ompeti-

tion in a trophi
 guild (subje
ted to frequen
y-dependent/apostati
 sele
tion

from a predator), and with humans - walking titans of 10 trillion 
ells harbor-

ing 100 trillion ba
terial 
ells in their large intestines, ea
h 
ell 
ontaining its

own lysogeni
 viruses or tranposable elements that self-repli
ate - all within a

bustling (and 
urrently growing but eventually saturating and limiting) world of

human groups (
ompanies, 
ultures, 
ountries) and symbionts (
rops, livesto
k,

dogs) all struggling over limiting resour
es for survival and repli
ation. Some

way, some how, out of this struggle for existen
e over �nite, unpredi
table re-

sour
es, we see not just many spe
ies of plankton or tropi
al trees, but a fra
tal

symphony of symphonies of 
ompeting, repli
ating things. Provided the broad

impa
ts of these ideas gives them some sele
tive advantage in the 
ommunity of

human ideas (in 
ompetition over limited publi
ation spa
e and professorships

and grants), or provided that I am fortunate in their neutral drift with equally

�t 
ompetitors, these three 
hapters will be just the �rst of many studies on


ompetition and 
oexisten
e in an unpredi
table world.
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Abstract

Dictyostelium discoideum is a well-studied amoeba with a complex life cycle that
includes both a single-cellular and a multicellular stage. To achieve the multi-
cellular phase, individual amoebae aggregate upon starvation to form a fruiting
body made of stalk and spores. The amoebae that contribute to stalk formation
undergo apoptosis while those that become spores survive and are able to repro-
duce, a behavior that has been described as altruism. When amoebae aggregate
they do not discriminate kin from non-kin, which sometimes leads to chimeric
fruiting bodies. Within chimeras, a linear hierarchy of winning and losing geno-
types has been documented, which suggests that there should eventually be
only one surviving genotype. This contradicts however the great diversity of
D. discoideum genotypes found in nature. Here we suggest that a little-studied
component of D. discoideum �tness � the loner cells that stay behind and do
not participate in the aggregate � could be selected for and achieve di�erent
abundances in environments with di�erent food recovery properties, and that
this could account for the apparent contradiction. We show that if at least two
environments exist that are su�ciently di�erent in their food recovery charac-
teristics, and if in addition they are connected via weak-to-moderate dispersal,
then coexistence of genotypes can occur. We further argue that the considera-
tion of loners as a component of D. discoideum �tness makes it hard to de�ne
altruistic behavior, winners or losers, without a clear description of the ecology
encountered by each genotype.

Signi�cance Statement

Dictyostelium discoideum is an amoeba whose life cycle includes both single-
cellular and multicellular stages, the latter achieved when individual amoebae
aggregate upon starvation. Because amoebae do not discriminate kin from non-
kin, chimeric aggregates can arise. Within chimeras, there is asymmetric con-
tribution to reproduction and, based on this, the co-existing genotypes can be
arrayed in a linear dominance hierarchy. This implies that only one genotype
can survive, contradicting the great diversity of strains found in nature. We
suggest that cells that fail to aggregate provide an additional �tness component
that, in a rich ecology with multiple environments connected via dispersal, re-
solves the contradiction. The study of non-aggregators further sheds light on
the discussion of altruism in D. discoideum.

Introduction

Dictyostelium discoideum is a social amoeba (or cellular smile mold) native to
the upper layers of soil and leaf litter, where it feeds on bacteria (1-5). Upon
exhausting their local supply of food, the solitary starving amoebae initiate a
developmental program, joining with nearby amoebae to form an aggregate that
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allows for facile transport to an area with more bacteria. Under some environ-
mental conditions, the aggregate initially forms a slug that can migrate toward
attractants such as light and heat that indicate a better future environment; but
the culmination of development, whether or not a slug is formed, is ultimately
a fruiting body. In this fruiting body, roughly 20% of the cells sacri�ce them-
selves, vacuolating and forming a cellulose wall that provides a sturdy stalk to
hold the remaining dormant spore cells o� the ground so that they can more
easily be dispersed to a new area. Since the stalk cells die for the bene�t of
the spore cells, this process is often discussed in terms of altruism and cooper-
ation (reviewed in (5)). In nature, there is signi�cant diversity and coexistence
of multiple strains of D. discoideum (6). Moreover, chimeras (aggregates con-
sisting of at least two genotypes) occur naturally (6-8), which implies that D.
discoideum amoebae do not discriminate perfectly in the process of aggregation.
These chimeras are functional and viable in the sense that their aggregation re-
sults in a fruiting body in which the multiple genotypes participate both in stalk
formation and in spore production. However, the genotypes are not necessarily
equally represented in the stalk and spores of the chimera (7). Through the
mixing of di�erent genotypes together into chimeras in the laboratory, linear
hierarchies of competitors have emerged (9,10), in which a stronger competitor
is a genotype that is disproportionately represented in the spores. From this
perspective, not all strains are equivalent, and hence chimeras are considered
suboptimal assemblages (10). In the absence of any additional information on
possible frequency-dependent processes that might maintain coexistence, the
existence of a linear competitive hierarchy suggests that there should be only
one winner. This raises a paradox � if there are clear winners within chimeras,
why is there so much diversity and coexistence among strains in nature (9)?
One possible resolution used to explain the absence of certain types of cheaters
in nature relies on spatial structure leading locally to a high degree of related-
ness that helps select against cheating genotypes (8, 11); however, this is only
the case for cheaters that are very harmful to group productivity (including
their own when clonal), and not for more `mild' cheaters that do take advan-
tage of others in chimeras but are still able to act cooperatively to a certain
extent, especially when clonal (8). The genotypes studied (10) �t better with
the latter category since they all contribute in some amount to both spores and
stalk, and therefore the high genetic relatedness mediated by spatial structure
is not an explanation (in this straightforward form, without additional informa-
tion about possible frequency dependent interactions between strains) for the
observed coexistence.

Another explanation for coexistence that was suggested but unexplored both
for D. discoideum (9) and for other cellular slime molds (12) is that strains that
are at a disadvantage in chimeras have an advantage at a di�erent stage in their
life cycle, i.e. that there is a tradeo� between sporulation e�ciency and other
�tness-related traits. To date, however, analyses of genotypical �tness have
focused on spore contribution as the sole �tness indicator. During the social
phase however, not all cells aggregate; some cells stay behind. We will refer to
them as non-aggregators or loners. Loner cells have been generally ignored so
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far; because D. discoideum do not make microcysts, it was assumed that non-
aggregating cells would simply die, which would be �an unlikely strategy� (9).
But recent results show that loner cells are viable, meaning that they can eat and
divide if food is replenished in the environment, and that therefore the loners
can be an important component of D. discoideum �tness (13). However, the
authors also found that epigenetic di�erences may lead to di�ering numbers of
aggregating and non-aggregating cells in a clonal population (13). We therefore
performed experiments to con�rm that there were no longer-term e�ects of
starvation or an epigenetic e�ect that prevented these non-aggregating �loner�
cells from aggregating in the future under starvation conditions. To test if such
an e�ect exists, we used cells left behind during the aggregation of starving D.
discoideum from a naturally isolated, clonal population that were allowed to
form fruiting bodies on non-nutrient agar (see SI for experimental details). The
fruiting bodies were then removed and fresh bacteria were added to the food
source facilitating the non-aggregating cells to re-grow and deplete the bacteria
as expected from (13) and re-aggregate and go on to form normal fruiting bodies,
leaving behind a population of non-aggregating cells themselves (see SI Fig A.1).
Therefore, we con�rm that the loners can be an important component of D.
discoideum �tness. Loner cells can act as a form of exploitation strategy: certain
environments may become advantageous quickly and, unlike spores that take
time to germinate, loner cells can begin to eat and divide instantaneously. Thus,
leaving behind some loner cells can give a genotype a head start in their home
environment. Then, environments where food replenishes faster (henceforth
fast-recovery environments) will select for genotypes that are more likely to
invest in loners, while environments where food replenishes slower (henceforth
slow recovery environments) will select for genotypes that are more likely to
invest in spores. Stochastic (unpredictable) environments potentially can select
for mixed strategies (13). We propose that, furthermore, if instead of focusing on
one environment we consider multiple environments connected via dispersal, the
loners and spores can play additional roles. The loners � an exploitation strategy
� can also be seen as ful�lling the role of local dispersal. By contrast, the spores �
an insurance against prolonged starvation � also ful�ll the role of global dispersal
since they are more likely to be dispersed to other environments. The spores
will thus either survive until food is reintroduced, or they will get dispersed to
new environments, some of which can be food-rich. Since environments with
di�erent food-replenishment characteristics select for di�erent investments in
spores versus loners, we hypothesize that weak-to-moderate dispersal between
fast-recovery and slow-recovery environments can allow for the coexistence of
multiple genotypes. We explore the feasibility of this notion through a model
of resource competition that considers both loners and spores as part of D.
discoideum �tness, in one environment, and in two environments connected by
various degrees of dispersal.
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Model and results

In our model, a D. discoideum genotype is characterized by a scalar α, which
represents the fraction of cells that aggregate; the remaining 1−α is the fraction
of non-aggregating cells, or loners. Thus, a monoculture of genotype α = 0
does not undergo an aggregation phase; a monoculture of α = 1 only produces
aggregates and leaves no loner cells behind. Intermediate α values represent a
mixed strategy, where some cells aggregate and others do not. Out of the cells
that aggregate, only a fraction will become spores (the remaining cells either
commit suicide and contribute to the formation of stalk, or get shed from the
slug during migration). Since cells that are shed during migration have also
been proved to be viable (14), they may similarly contribute to D. discoideum
�tness; however, the number of cells left in the trail is probably in�uenced by
how far individual slugs migrate in di�erent environments, which has not been
quanti�ed in the wild. Similarly, di�erent genotypes have di�erent investments
in stalk versus spores (10); however, in this paper we are not concerned with
the selective forces that shape the stalk-to-spore investment ratio. For these
reasons and in order to simplify our analysis, we will assume that the cell loss
during migration and the investment in the stalk are �xed and identical for all
genotypes so that we can focus our analysis solely on the fraction of spores versus
loner cells. The model we describe will depend on the ecology that in�uences
the lifecycle of D. discoideum. For simplicity, we are not concerned with soil
type, light or moisture and assume those to be the same across environments;
the property of interest is the ability of food to replenish in a given environment,
or in other words, the starvation times experienced in that environment. One
environment (patch). In the �rst part of the model we assume that the world
is comprised of a single environment, in which food replenishment can be either
deterministic (certain) or stochastic (uncertain). This model is similar to (13)
but it is more general in that it explicitly accounts for resource competition
among di�erent genotypes. The amoebae consume resources, reproduce freely
and grow at a rate governed by Michaelis-Menten kinetics (15). The di�erent
genotypes compete indirectly through the existing resources, but we assume
no other frequency-dependence between types (i.e. we assume that intrinsic
parameters such as the growth and aggregation rates of di�erent genotypes are
independent of the composition of the population). Since there is little-to-no
information in the literature about growth rates of di�erent genotypes, we make
the simplifying assumption that di�erent genotypes grow according to the same
saturating functional form cR/(R1/2 + R) where R is the amount of available
resources, c is the consumption rate and R1/2 is the concentration of resources
at which the reaction rate is at half its maximum. We further assume that
amoebae die at rate µ.

We describe the dynamics of active amoebae of all genotypes α existing in
the same environment as resources are depleted by the growing amoebae un-
til they are no longer able to sustain growth, after which the amoebae enter
a starvation phase. During this phase, a fraction α of cells of genotype α ag-
gregate with the purpose of forming spores, while the remaining 1 − α stay as
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starving loners. The non-aggregating (loner) cells stop consuming resources,
stop reproducing, and decay at rate until the next resource pulse. Of the aggre-
gating cells, a fraction s become viable spores; we assume that spores are very
resistant to environmental stress, but that they nevertheless incur a small decay
rate ; therefore, we assume that δ < µ. When the starvation period is over,
food is reintroduced in one resource pulse, R0. Then the surviving loner cells
start consuming resources and reproducing immediately, while spores undergo
a delay period , which is the time required to activate the metabolic machinery
necessary for resource consumption. The longer the delay τ , the more cost will
be incurred by spores in an environment where loner cells are already consuming
the resource while the spores undergo the germination process. Therefore geno-
types that can leave behind some loners can have a head start and be favored.
If resources get depleted before the germination period is over, we assume that
spores return to dormancy, without incurring any cost associated with the abor-
tion of the germination process. In reality, in addition to the costly delay of
germination, D. discoideum also experiences a costly delay of sporulation: after
only 6 hours, just as individual amoeba are beginning to aggregate, they are ir-
reversibly committed to continuing with sporulation for the remaining 18 hours
of the process (16). Since we are trying to show that in certain environments
loners can be selected for, an additional cost for the spores will only make the
selection for loners stronger and reinforce our results. Therefore, for simplicity,
we do not include in our model the additional cost due to the irreversibility
of the sporulation process. The dynamic equations describing the spores and
loners are presented in the Supplementary Information. In a single environment
as described above, with competing D. discoideum genotypes and instantaneous
resource pulses arriving at random times, we explore how the lengths of the star-
vation periods that a genotype experiences a�ect its investment in spores and
loners. Our results agree with (13). In a deterministic environment (i.e. when
the starvation times are always of the same length) there is selection for one of
the pure strategies: we �nd a critical threshold starvation time Tcr such that
for T < Tcr the winning genotype is one that never produces any aggregates
(α = 0) while for T > Tcr the winning genotype is one that always aggregates to
produce spores (α = 1). When the environment is stochastic such that succes-
sive starvation times are independent and exponentially distributed with rate
1/λT , we �nd that mixed strategies can be selected for: if on average the envi-
ronment is a fast-recovery one (low λT ), then the mixed strategy invests more
in loners than in spores; indeed, for su�ciently low λT , only loners will survive.
Conversely, if the environment is a slow-recovery one (high λT ), then the mixed
strategy invests more in spores (see Fig. 1A), and for su�ciently high λT only
spores will persist.

6



Figure 1: In one environment, deterministic (�xed) starvation times always select for pure strate-

gies while stochastic starvation times can select for mixed strategies. A. The corresponding to the

evolutionarily stable strategy (ESS) is shown as a function of average starvation time for both de-

terministic and stochastic cases. In the deterministic case, if T is under a threshold (calculated

in SI) then the all-loners strategy wins; if T is above the threshold, then the all-spores strategy

wins. In the stochastic case, extreme average starvation times select for the corresponding pure

strategies, but intermediate average starvation times select for mixed strategies (intermediate ). B.

The pairwise invasibility plot (PIP) for the stochastic case with average starvation time λT = 1000.

The ESS strategy is α= 0.63, which invests 63% in spores and 37% in loners.

The evolutionary stability (ESS) (17) of the mixed strategy is further con-
�rmed by a pairwise invasibility analysis for a �xed stochastic environment
with a given intermediate average starvation (see Fig. 1B). Here we assume
an exponential distribution of starvation times; assuming uniformly distributed
starvation times (13) leads to qualitatively similar results. In the future it will
be interesting to explore other distributions (e.g. normal); however, we gen-
erally expect similar results to hold. We next study the e�ects of the model
parameters on the evolutionarily stable genotype. The higher the consumption
rate c, and implicitly the reproductive rate of solitary amoebae, the more likely
it is to select for loners in the intermediate starvation regions; this is intuitive
since the more that loners can take advantage of new food, the more advantage
they will have over the spores. Similarly, the longer the spore germination delay
τ , the bigger the cost incurred by spores, which favors genotypes with more
loners. Loners will also be more favored the higher the death rate of spores, .
Conversely, the higher the spore success rate s or the death rate of single cells ,
the better it is for genotypes with more spores (Fig 2A-E).
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Figure 2: The sensitivity of the model to the parameters. A, B, C, F. Higher consumption rate

(c), spore death rate (δ), time needed for spore germination (τ) or resource input favor selection for

loners. D, E. Conversely, higher loner decay rate (µ) or higher spore survival and viable germination

rate (s) favor selection for spores. In all panels, the lowest value of the parameter is red, the

intermediate is green and the highest value is blue. Except for the parameter varied to perform the

sensitivity analysis, all other parameters are as in Table S1. Parameter values for the sensitivity

analysis: c = 0.086, 0.173, 0.346; = 0.00004, 0.0002, 0.001; = 2, 4, 8; = 0.001, 0.002, 0.004; s =

0.25, 0.5, 0.75; R0 = 104, 108, 1012.

Finally, we treat the size of the resource pulse, R0, separately. If the re-
source pulse is �xed, then the higher it is, the easier it is to select for loners.
However, while varying R0 has a sigmoidal e�ect on Tcr for constant T (SI Fig
B.6), the bene�ts of varying R0 in a stochastic environment are marginal and
the resulting ESS α varies little with varying resource pulse size (Fig 2F). This
is because T is exponentially distributed and the e�ects of R0 are sigmoidal,
with only a small intermediate region in which the selection for spores or loners
is sensitive to varying R0. Finally, a more realistic scenario is that the resource
pulse is stochastic. Our simulations suggest that introducing stochasticity in the
resource pulse size does not select for mixed investment in loners and spores: if
the starvation time T is �xed and the only source of stochasticity comes from
the resource pulse, it appears that the only evolutionarily stable strategies are
the pure strategies (see SI Fig B.7). However, because this is only a simulation
result, it is possible that for di�erent parameter combinations resource stochas-
ticity will result in mixed investment. The relationship between the resource
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Figure 3: In two environments, if food recovery is deterministic and the environments are su�-

ciently di�erent, coexistence between the two pure strategies is possible in the faster environment.

The more di�erent the environments, the larger the dispersal range that allows coexistence � T =

1400, T = 500 allow coexistence for the entire dispersal range 0 < D < 1 while T = 850, T = 650

allow coexistence only for D<0.5. The color scale, ranging from 0 (blue) to 1 (red), represents the

average relative abundances across 60 replicates at the end of 1500 growth/starvation cycles.

pulse and the time to starvation is an interesting one and needs to be further
explored, for di�erent distributions of resources and stochastic times; however,
since our preliminary analysis suggests that the more interesting and rich be-
havior seems to be induced by the starvation times, in this paper we choose to
perform the entire analysis for a �xed resource input following every starvation
period.

Two environments (patches). Including the loners in the analysis already
produces interesting behavior (selection of mixed strategies) in one environ-
ment. In this second part however we explore whether the extension of our
model to a spatially heterogeneous environment connected via spore disper-
sal can, under certain conditions, favor the coexistence of genotypes, pure or
mixed. For simplicity, we consider exactly two environments characterized by
di�erent starvation times. Each environment is governed by the same dynamics
as above, but they receive and exhaust resources independently of each other
(asynchronously); the only element that couples the dynamics in the two envi-
ronments is the dispersal of spores. When starvation occurs in one environment,
a fraction 1−D of the spores remain in their home environment while a fraction
D are moved to the other environment. Because the dynamics in the two envi-
ronments are desynchronized, when spores get moved to a new environment they
may immediately �nd food and start the germination process, or they may be ly-
ing dormant until food gets introduced into that environment. We consider two
scenarios, depending on whether the starvation times in the two environments
are deterministic or stochastic. If the two environments are deterministic, in the
sense that environment i (for i = 1,2) always has a starvation time of length Ti,
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then in the absence of dispersal they each select for a pure strategy. Because
we are interested in environments with di�erent starvation times, we study fast
recovery environments, which select for all loners ( = 0), paired with slow recov-
ery environments, which select for all spores ( = 1). When dispersal is allowed
between the two environments, coexistence of the two pure strategies can occur
for weak dispersal, such that each strategy will dominate in the environment
in which it is selected but, because of dispersal, spores will be present in both
environments. As the dispersal fraction increases, however, two alternative out-
comes can occur depending on how di�erent the starvation times in the two
environments are: (i) If the two environments are very di�erent, coexistence in
the fast environment can be maintained for a large range of dispersal values.
This is because the very fast recovery of food allows the loners to grow quickly
and dominate their home environment. (ii) The more similar the environments
however, only weaker dispersal can maintain coexistence. For stronger dispersal
the spores can easily start to dominate the loners in the fast environment and
eventually replace them (Fig 3). If the two environments are stochastic, the
behavior is richer. As in the deterministic case, each environment will have its
winner in the absence of dispersal; and the more di�erent the two environments,
the more di�erent the respective winning genotypes. When dispersal connects
the two environments, for low-to-medium values of D, both genotypes coexist
in both environments, although, as in the deterministic case, each environment
is dominated by the genotype for which it selects. Due to stochasticity, in the
presence of new mutations, each of the two coexisting genotypes is in fact likely
to be a genotype surrounded by a cloud of its very close relatives (similar to a
quasispecies, (18)); in that case, more than two genotypes might coexist due to
dispersal and stochasticity in starvation times. Although stochasticity does al-
low for a richer coexistence than the one found in the deterministic case because
mixed strategies coexist in both environments, it does so for a narrower range
of dispersal fractions (weak-to-moderate dispersal). As dispersal increases, the
two environments become increasingly more connected and new winning strate-
gies evolve that are still dominating their home environments but are better
able to deal with the other environment as well. When dispersal becomes high
enough there is su�cient transfer between them for a new successful genotype to
emerge that is selected for the average of the two environments, and coexistence
is lost. As was the case in the deterministic scenario, the dispersal range for
which coexistence is maintained depends on how di�erent the two environments
are, with more similar environments losing coexistence faster (Fig 4; see also SI
Fig B.8 and B.9).

Discussion

We argue that recognizing that loners (non-aggregating cells) contribute to D.
discoideum �tness and combining that with a richer ecology can explain the
observed coexistence of diverse genotypes, thus resolving the paradox created
by the linear competitive dominance in chimeras. The additional �tness com-
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Figure 4: In two environments, if food recovery is stochastic and the environments are su�ciently

di�erent, coexistence between two (possibly) mixed strategies is possible in both environments. The

more di�erent the environments, the larger the dispersal range that allows coexistence: T = 1400,

T = 500 allow coexistence for approximately D < 0.6; T = 1200, T = 600 allow coexistence only

for approximately D < 0.1; T = 1000, T = 700 allow coexistence only for approximately D < 0.01.

The color scale, ranging from 0 (blue) to 1 (red), represents the average relative abundances across

60 replicates at the end of 1,500 growth/starvation cycles.

ponent represented by the loner cells allows for mixed strategies in variable
environments; this, coupled with the existence of at least two di�erent environ-
ments connected via weak-to-moderate dispersal ensures the coexistence of at
least two genotypes (Fig 5).

These ideas of spatially and/or temporally heterogeneous (variable) environ-
ments leading to risk-spreading or long-term optimization strategies including
dormancy versus dispersal, persistence versus normal growth versus dormancy,
and exploitation versus exploration are well established in ecology from stud-
ies of plants (19-25) to those of bacteria (26), planktonic copepods (27), and
even social insects (28). Coupled with ideas of colonization-competition trade-
o�s (29-34), their e�ects on spatial coexistence of multiple phenotypes or even
species has been well studied. However, to the best of our knowledge, they have
never been suggested to explain coexistence in D. discoideum. Furthermore, in
the context of cooperation and altruism, our loners have a strategy similar to
the loner strategy described in the game-theoretic literature (35). There, loners
are individuals who choose to opt out of the game or social contract. Because
they cannot be exploited by defectors, loners persist in the population and al-
low the recovery of cooperators via rock-paper-scissors type dynamics. Due to
their proven viability here and elsewhere (13) and by analogy with the existing
theoretical and empirical literature, it therefore makes sense to explore the pos-
sibility that the loners contribute to D. discoideum �tness, and here we begin
to show theoretically the rich behavior that such an expanded strategy space
would display.

Much remains to be done empirically before the non-aggregating cells of D.
discoideum are convincingly proven to be selected for, and before the mecha-
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Figure 5: Fast-recovery environments select for investment in loners; slow-recovery environments

select for investment in spores. Fast- and slow- recovery environments connected via weak-to-

moderate dispersal allow for coexistence of strategies � each strategy dominates its home environ-

ment but dispersal allows for it to be present in the other environment as well.

nisms by which a genotype mediates the amount of loner cells left behind are
understood. Because quorum sensing is instrumental in the decision to aggre-
gate in D. discoideum (reviewed in (5)), one possibility is to search for mech-
anistic hypotheses there. We hypothesize two related mechanisms by which a
D. discoideum genotype could lead to mixed investment in loners and spores
when grown in a monoculture: (i) direct, signal-mediated quorum activation,
and (ii) indirect, resource co-mediated quorum activation. The former posits
the genotypes have varying and heritable sensitivities directly to the autoin-
ducer; the latter posits that resource availability mediates a cell's probability
of responding to an autoinducer, and that the genotypes have varying resource
starvation tolerances (hence resource co-mediated quorum activation). As re-
sources are depleted, small-scale spatial heterogeneity can lead to some cells of
the same genotype sensing abundant resources in their local environment and
others sensing sparse resources. For a given level of resources and a given degree
of spatial heterogeneity, a fraction of the cells may initiate their developmental
program and move towards aggregation, and that fraction can vary across geno-
types due to variation in the sensory and transcriptional machinery involved in
detecting local resource density. Recent work (13) supports the plausibility of
such a mechanism, but as loners still remain even in homogenous food condi-
tions it is unresolved if this is the only mechanism at work in loner formation.
We suggest that dose-response experiments examining di�erent genotypes' re-
sponsiveness to the autoinducer at various resource concentrations could test
this hypothesis and assess the validity of our model.

It is furthermore important to note that the loners might not be the only
additional component of the amoeba �tness. Since the stalk is considered to
play an important role in dispersal, it is natural that stalk allocation would also
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play an important role; similarly, since cells left behind in the trail of the slug
have been shown to remain viable (14), they too possibly need to be included.
But because slugs are not always formed and because they travel di�erent dis-
tances depending on the environment (therefore shedding di�erent amounts of
cells), a more careful analysis and further experiments are necessary to deter-
mine exactly how to include these additional components into the D. discoideum
�tness. Furthermore, our model assumes that di�erent genotypes have identical
growth rates both within the same environment and across di�erent environ-
ments. Since empirical studies of growth rates are lacking, it would have been
arbitrary to posit di�erential growth. We expect however that, provided more
empirical evidence, a further extension of the model to include stalk- and trail-
shedding allocations as well as possible frequency-dependent interactions among
genotypes could produce an even richer set of predictions.

Here we have made a theoretical case for resolving the paradox of multi-
ple genotype coexistence through considering non-aggregating cells as part of
the D. discoideum strategy. We further suggest however that, if the loners are
shown to be indeed selected for, other existing analyses of D. discoideum need
to be revisited. For example, because stalk cells undergo apoptosis, D. dis-
coideum has been used as a powerful model organism to explore the evolution
and maintenance of altruism (reviewed in (5)). But whereas before the �tness
of a genotype was well-de�ned as the number of spores it produced, because
of the loners' contribution, �tness is a much more complicated quantity that
strongly depends on the environments that genotype will encounter. The same
is true for chimeras, where it is possible that a genotype that is better repre-
sented in the spores is less represented in the loners and vice versa, which makes
the success of a genotype in a chimera dependent on the environments in which
the chimeras exist. Including the loners in the analysis could also o�er very dif-
ferent interpretations to the stalk/spore measurements performed to evaluate
dominance in chimeras (9). Therefore, in this new context, a cheater, whether
it be in a clonal or in a chimeric context, is much more challenging to de�ne,
motivating a comprehensive consideration of an organism's life history and eco-
logical context when looking for problems of altruism. Finally, we focused our
analysis on D. discoideum since it is the best studied of all cellular slime molds.
However, similar diversity and coexistence has been identi�ed in the majority
of cellular slime molds (36) and both intra- and inter-speci�c chimeric fruiting
bodies have been found to occur (12, 37, 38), albeit the interspeci�c ones are
much rarer due to various interspecies barriers to mixing (37-39). As is the case
in D. discoideum, within chimeras there are asymmetries in the contribution of
the di�erent strains to the reproductive tissue (12, 38, 40). Moreover, the social
behavior of D. discoideum by no means exhausts the enormous range of develop-
mental strategies that are seen in the slime molds (or even in the Dictyostelids).
There are species in which a single amoeba can sporulate, species in which the
stalk is an extracellular product and species in which cells die and produce a
stalk continuously during the course of migration (2, 4, 41). We expect therefore
that an extension of this analysis can be performed for other species, which will
allow us to explore meaningful theoretical and empirical comparisons between
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their di�erent social behaviors as well as their abilities to coexist.
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SUPPLEMENTAL

INFORMATION

1 Experimental con�rmation of loner viability

Clonal, natural strains NC34.1, NC105.1, and NC98.1 of Dictyostelium dis-
coideum, originally from Little Butt's Gap, North Carolina, USA (Francis and
Eisenberg 1993) were obtained from dictyBase (Fey, et al. 2013) and maintained
on Klebsiella aerogenes lawns grown on SM agar plates. For growth of amoebae,
spores of each strain were inoculated in SorMC bu�er(15 mM KH2PO4, 2 mM
Na2HPO4, 50 µM MgCl2, and 50 µM CaCl2) supplemented with Klebsiella to
an OD600 of 8 and shaken at 190 r.p.m. For starvation experiments, vegetative
cells were harvested from these shaking cultures, washed, and resuspended at 1-
2x107 cells/mL in developmental bu�er (DB; 10 nM K/Na2 phosphate bu�er, 2
mM MgSO4, 0.2 M CaCl2, pH 6.5). 1-2 µL of this cell suspension was placed on
a non-nutrient agar plate and allowed to aggregate. To test the viability of cells
left behind after aggregation, spores were removed using an inoculation loop
and 5 µL of Klebsiella at an OD600 of 8 in SorMC were added to the remaining
cells.

We used cells left behind during the aggregation of starving D. discoideum
(Fig. 3A) that were allowed to form fruiting bodies on non-nutrient agar (Fig.
3B,C). When these fruiting bodies are removed (Fig. 3D) and fresh bacteria are
added as a food source (Fig. 3E), the non-aggregating cells re-grow and deplete
the bacteria as expected from Dubravcic et al (2014) and re-aggregate and go on
to form normal fruiting bodies, leaving behind a population of non-aggregating
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cells themselves (Fig. 3F).

2 Analytical results for one environment

The dynamics of free-living amoebae is described by:

dR

dt
= − cR

R1/2 +R

∑
α

Xα

dXα

dt
=

cR

R1/2 +R
Xα − µXα

(1)

for all genotypes α. Here R is the available resource and Xα is the abundance of
amoebae of genotype α. Amoebae die at rate µ and reproduce and grow follow-
ing Michaelis-Menten kinetics (Michaelis & Menten 1913), where c is chosen such
that c > µ. When resources are no longer able to sustain the growth of amoebae
(i.e. when dXα/dt = 0 and R∗ = µR1/2/(c−µ)), these enter a starvation phase.
We let t∗X0;R0

be the time to starvation when the initial total amoeba population
is X0 and the initial resource availability is R0. For simplicity of exposition we
will henceforth often use t∗ (unless otherwise needed for disambiguation) but
we will implicitly assume its dependence on initial conditions.

We proceed to calculate the time to starvation t∗, the total abundance of
amoebae at time t, X(t) =

∑
αXα(t) and the abundance of amoebae of geno-

type α at time t, Xα(t). From equations (1) we obtain the change in amoeba
abundance X as a function of resources R:

dX/dR = −1 + µ

c
+
µR1/2

cR
(2)

which allows us to �nd X as a function of R, and of the initial conditions:

X(R;X0;R0) =
(
− 1 +

µ

c

)
R+

µR1/2

c
logR+ const.(X0, R0) (3)

Here the constant term is determined from the initial conditions. Plugging (3)
into the �rst equation in (1) we �nd

dR

dt
= − cR

R1/2 +R
X

= − cR

R1/2 +R

((
− 1 +

µ

c

)
R+

µR1/2

c
logR+ const.(X0, R0)

)
=: − 1

f1(R;X0;R0)

(4)

where the last equality simply indicates notation. Here f1 is monotonic and
positive on the interval of interest. Then we obtain an expression for time as a
function of resources:

t(R;X0;R0) =

ˆ R

R0

(
− f1(y)

)
dy =

ˆ R0

R

f1(y)dy =: f2(R;X0;R0) (5)
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where the last equality is again notation. From this equation, which we solve
via numerical integration, we obtain two key quantities. First, we �nd the time
to starvation t∗ simply as

t∗(X0;R0) =

ˆ R0

R∗
X0,R0

f1(y)dy (6)

where R∗X0,R0
is the equilibrium level of resources in equation (1) with initial

conditions X0, R0. Agreement between our formula (6) and simulations can be
see in Figure S3.

Second, by �nding the inverse of function f2, which exists since f1 and hence
f2 are strictly monotonic functions of R, we obtain R as a function of t:

R(t;X0;R0) = f−12 (t(R;X0;R0)) (7)

Agreement between our analytical result (7) and simulations is shown in Figure
S4(a). From (4) we know that X = (R1/2 + R)/(cRf1(R;X0;R0)), so substi-
tuting R(t) we �nd the abundance X as a function of time:

X(t;X0;R0) =
R1/2 + f−12 (t)

cf−12 (t)

1

f1(f
−1
2 (t))

(8)

Agreement between our result (8) and simulations is shown in Figure S4(b).
Because we assume that amoebae of di�erent genotypes have identical repro-
ductive and death rates, we can write the growth derived from one cell during
time t, starting with initial population size X0 and resources R0 as:

G(t;X0;R0) =
X(t;X0;R0)

X0
(9)

Agreement between our result (7) and simulations is shown in Figure S5. Then
the abundance of amoebae of genotype α at time t is given by Xα(t;X0;R0) =
Xα,0G(t;X0;R0), where Xα,0 is the initial abundance of genotype α.

We can now proceed to analyze the fate of a genotype when successive pe-
riods of food and starvation occur. In what follows, to simplify our analysis,
we assume that, after a starvation period, the same amount of initial resources
is introduced. Moreover, in order to simplify our notation we will use t∗ (but
implicitly assume that it depends on the initial resources as well as the initial
population size) to denote the time to starvation after all amoebae are active.
If the population has a non-zero number of spores, then from the moment re-
sources are introduced it will take time τ for all amoebae to be active. It is
at that point (after time τ) that we start to measure the starvation time t∗

(see Fig 2). Because spores and loners have di�erent fates, we keep track of
each independently; furthermore, we keep track of the number and length of
starvation periods that a genotype has experienced. We consider a food period
followed by a starvation period as one event and we let Sα,k and Lα,k denote
the abundance of spores, respectively of loners of genotype α after the kth food
phase (i.e. at the beginning of the starvation phase of event k, see Fig 6).

We distinguish two cases:
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Figure 6: Events k and k+ 1 with their food (growth) and starvation phases, showing where the

spores and loners are measured in our analytical description above.

• (i) the loners �nish the available food before the spores have had a chance
to germinate; this can only be the case when there are at least some
genotypes in the population that invest in loners. In this case we can
write

Sα,k+1 = e−δ(Tk+1+t
∗
k+1)Sα,k + αe−µTk+1Lα,kG(t

∗
k+1)

Lα,k+1 = (1− α)e−µTk+1Lα,kG(t
∗
k+1)

(10)

where for simplicity of notation we usedG(t∗k+1) = G(t∗k+1; e
−µTk+1Lk;R0),

which is the growth of a cell before the resources are depleted, given that
the initial number, e−µTk+1Lk, of cells is given by the number of surviving
loners after starvation time Tk, and that the initial resource input is R0.
Notice that for the growth function we do not use an index α. This is be-
cause the initial conditions after starvation event k might contain loners
of many di�erent genotypes. Thus, when we say Lk we mean all loners, of
all possible genotypes, after phase k. Note that, as mentioned above, t∗

also depends on the initial conditions � however, to simplify the notation,
since the initial conditions are the same as those in the argument of G, we
simply use t∗.

• (ii) the spores can complete their germination, in which case we can write:

Sα,k+1 = α
(
e−δ(Tk+1+τ)sSα,k + e−µTk+1Lα,kG(τ)

)
G(t∗k+1)

Lα,k+1 = (1− α)
(
e−δ(Tk+1+τ)sSα,k + e−µTk+1Lα,kG(τ)

)
G(t∗k+1)

(11)

where as before, for simplicity, we denote G(τ) = G(τ ; e−µTk+1Lk;R0) to
be the growth of a cell during time τ , given that the initial population is
made of the surviving loners and the initial resources are R0. Similarly,
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G(t∗k+1) = G
(
t∗k+1; e

−δ(Tk+1+τ)sSk+e
−µTk+1LkG(τ);R(τ ; e

−µTk+1Lk;R0)
)

is the growth of a cell in the time before resources are depleted, given
that the new initial population size is given by the active spores that have
survived starvation and successfully completed germination and the loners
which have grown for time τ ; the amount of resources available is that left
from the initial R0, after the loners have consumed food during time τ .
Here, as well, the growth is determined by all genotypes in the population;
hence the growth term does not depend on the genotype α. Note that, as
mentioned above, t∗ also depends on the initial conditions � however, to
simplify the notation, since the initial conditions are the same as those in
the argument of G, we simply use t∗.

For di�erent Tk this problem is hard (if not impossible) to solve analytically.
However, when the environment is entirely deterministic (i.e. all starvation
times have the same length) analytical results are possible. When all starvation
periods have the same length T , our simulations show that the system converges
to equilibrium values S∗α, L

∗
α and t∗. At this equilibrium, the system will either

be such that we are in case (i) (loners �nish the food before spores can germinate)
or in case (ii) (spores can complete the germination process). If the former, then
at equilibrium spores never get to germinate, but simply decay at rate δ; so it is
trivial that the winning genotype will be one that does not invest in spores at all,
i.e. α = 0. The more interesting scenario occurs when at equilibrium we are in
case (ii), so that genotypes that invest in spores can potentially have a bene�t.
In this case, we need to explore what strategies can be present at equilibrium.
For this, we perform an analysis to assess what strategies are evolutionarily
stable. At equilibrium, a resident monoculture population of type α will satisfy
the following:

S∗α = α
( A︷ ︸︸ ︷
e−δ(T+τ)s S∗α +

Bα︷ ︸︸ ︷
e−µTGα(τ)L

∗
α

)
Gα(t

∗)

L∗α = (1− α)
(
e−δ(T+τ)sS∗α + e−µTGα(τ)L

∗
α

)
Gα(t

∗)

(12)

where the subscript α in Gα(τ) and Gα(t
∗) simply means that there is only

one type in the population and where we denote A = e−δ(T+τ)s and Bα =
e−µTGα(τ). The above equations imply that S∗α/L

∗
α = α/(1 − α) for α 6= 1.

When α = 1 then L∗α = 0, as expected. Then from (12) we obtain that the
growth of a cell before starvation in an environment where only type α is present
is given by

Gα(t
∗) =

1

αA+ (1− α)Bα
(13)

This holds for α 6= 1; however, for α = 1 we conclude directly from (12) that
S∗1 = AG1(t

∗)S∗1 , which implies that G1(t
∗) = 1/A. Thus, (13) holds for all

α ∈ [0, 1].
If we introduce a very small population of an invader β into a resident
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population α 6= 1, then the growth of β is described by the equations

S′β,α = β
(
ASβ,α +BαLβ,α

)
Gα(t

∗)

L′β,α = (1− β)
(
ASβ,α +BαLβ,α

)
Gα(t

∗)
(14)

The subscript α signi�es, as above, that the resident population is of type α.
Since the invader genotype is introduced at very low levels, its immediate growth
occurs in the environment where growth is still determined by the resident
genotype, such that Gα(t∗) is in fact given by (13). The only exception is when
α = 1, i.e. the resident is all-spores. Then any genotype β 6= 1 will have loners
that will be able to grow during time τ as if they were alone in the environment;
thus, in this case, the growth in time τ is in fact Gβ(τ) and not G1(τ) and the
matrix becomes

S′β,1 = β
(
ASβ,1 +BβLβ,1

)
G1(t

∗)

L′β,1 = (1− β)
(
ASβ,1 +BβLβ,1

)
G1(t

∗)
(15)

Next we calculate in general the growth of genotype β in an α-monoculture;
for α 6= 1 this can be found from (14) to be λβ,α = βAGα(t

∗)+(1−β)BαGα(t∗),
which can be further written as:

λβ,α =
βA+ (1− β)Bα
αA+ (1− α)Bα

(16)

for α 6= 1, while for α = 1 we obtain from (15)

λβ,1 =
βA+ (1− β)Bβ

A
(17)

We �rst explore when the pure strategies can invade or be invaded by other
strategies.

[noitemsep]

• (a) 0 is not invadable by strategy α 6= 0 if and only if λα,0 < 1, which is
equivalent to A < B0. Since this latter condition is independent of α, we
conclude that if A < B0, then 0 is not invadable by any strategy α 6= 0.
Conversely, if A > B0, then 0 is invadable by all strategies.

• (b) 0 can invade strategy α if and only if λ0,α > 1, which is equivalent to
A < Bα.

• (c) 1 is not invadable by strategy α 6= 1 if and only if λα,1 < 1, which is
equivalent to A > Bα.

• (d) 1 can invade α 6= 1 if and only if λ1,α > 1, which is equivalent to
A > Bα. If A = Bα then 1 and α are neutral with respect to each other.
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From these conditions we conclude that a strategy α can be invaded by either
strategy 0 (if A < Bα) or by strategy 1 (if A > Bα). Therefore, an intermediate
strategy α can never be an ESS and the only possible ESSes are the pure strate-
gies. (In the threshold case A = Bα, 1 and α are neutral, so α is again not an
ESS). Next we will show that there can be at most one ESS.

From (a) above, we know that 0 is ESS if A < B0; using (c) this also means
that 0 invades 1, which means that 1 cannot be an ESS. Similarly, if 1 is an ESS,
then from (c) we know that A > Bα for all α 6= 0; this implies that A > B0

as well, which means that 0 cannot be an ESS. Thus, there can be at most one
ESS for a given set of parameters. Finally, we explore whether there can be no
ESSes (i.e. whether neither of the pure strategies is an ESS). One possibility
occurs when 0 and 1 are neutral with each other, i.e. A = B0. In that case we
�nd the critical starvation time threshold

Tcr =
log(G(τ))− log s+ δτ

µ− δ
(18)

such that if T < Tcr then 0 is an ESS and if T > Tcr then 1 is an ESS (Fig.
??A).

Another possibility for there not to be any ESS is if A ≥ B0 (i.e. 0 is not
an ESS) and A < Bα for some α ∈ (0, 1) (i.e. 1 is not an ESS). However, we
conjecture and con�rm via simulations for the parameters of interest in this
paper that for biologically relevant parameter regimes either 0 or 1 will be an
ESS, except when these are neutral to each other. This last case is given by
(18).

From equation (18) it is also easy to see how the parameters of our model
a�ect the threshold Tcr: the right hand side of the above equation is decreasing
in s and µ and increasing in τ , δ and G(τ), the latter of which is an increasing
function of the resource input R0, an increasing function of the consumption
rate c and a decreasing function of R1/2. Thus, we conclude that loners are
favored for decreasing spore success rate s, decreasing loner mortality rate µ,
and decreasing R1/2 and for increasing time to germination τ and increasing
spore mortality rate δ. Finally, we treat the size of the resource pulse, R0,
separately. If the resource pulse is �xed, then the higher it is, the easier it is to
select for loners. Varying R0 has a sigmoidal e�ect on Tcr for deterministic T
(Fig 2), suggesting that for low and high values of the resource pulse the bene�t
of increasing R0 is only marginal. Thus, since T is exponentially distributed,
the bene�ts of varying R0 in a stochastic environment are marginal and the
resulting ESS α varies little with varying resource pulse size.

Finally, a more realistic scenario is that the resource pulse is stochastic.
Our simulations suggest that introducing stochasticity in the resource pulse size
does not select for mixed investment in loners and spores: if the starvation
time T is �xed and the only source of stochasticity comes from the resource
pulse, our simulations �nd that the only evolutionarily stable strategies are the
pure strategies. However, because this is only a simulation result, it is possible
that for di�erent parameter combinations resource stochasticity will result in

22



mixed investment. The relationship between the resource pulse and the time to
starvation is an interesting one and needs to be further explored, for di�erent
distributions of resources and stochastic times; however, since our preliminary
analysis suggests that the more interesting and rich behavior seems to be induced
by the starvation times, in this paper we choose to perform the entire analysis
for a �xed resource input following every starvation period. A full sensitivity
analysis for stochastic T is shown in Fig. 2.

Figure 7: Varying R0 has a sigmoidal e�ect on the threshold Tcr: low values of R0 lead to low

threshold values and thus favor spores; high values of R0 lead to high threshold values and thus

favor loners; in between, for a narrow range of intermediate values, there is a sudden jump. Green

= all-spores; red = all-loners. All parameters are as in Table C.1.
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Figure 8: Long-term simulations show that the coexistence of strategies for more similar envi-

ronments with stochastic starvation times is only possible for low values of dispersal. For D = 0.1

there is coexistence between strategies α = 0.35 and α = 0.7 while for D = 0.2 coexistence is lost.

Green = strategies with higher spore investment; red = strategies with higher loner investment.
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Figure 9: Long-term simulations show that the coexistence of strategies for less similar environ-

ments with stochastic starvation times is possible for low-to-medium values of dispersal. For both

D = 0.4 and D = 0.5 there is coexistence between strategies (α = 0.1 and α = 0.85 for the former;

α = 0.5 and α = 0.9 for the latter). For higher values of D coexistence is lost. Green = strategies

with higher spore investment; red = strategies with higher loner investment.
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3 Details of the simulations

All simulations were run using MATLAB R2013b. ode15s was used for numerical
integration of B1, and the parallel computing toolbox was used to more rapidly
sample replicates for trajectories, invasion analysis, and sensitivity analysis.

One environment (patch). Populations were initialized with 21 genotypes
αi = 0.05i, i = 0, . . . , 21 whose initial abundances were independently drawn
from a standard log-normal distribution and subsequently normalized so that
the entire population contained 108 cells. The cells of the di�erent genotypes
were then split into spores with probability αi and loners with probability 1−αi.

An initial resource pulse of magnitude 108 was added and the trajectories
governed by equation (1) were numerically integrated, with spores remaining
inactive until τ hours after the resource pulse. The simulation was stopped when
the resources could no longer sustain a growing population, that is, when the
resources crossed R∗. If the resources were consumed by the active loners before
the spores were able to activate, the spores remained dormant and una�ected
(i.e. there is no cost to spores aborting germination). After the resources ran
out, each subpopulation of genotype i split into spores with probability αi and
loners with probability 1 − αi. Only a fraction s of spores were viable upon
germination. Starvation times, Tk, were drawn from an exponential distribution
with mean λT . T is the time between the end of growth (t∗) and the arrival
of the following resource pulse. During the starvation time, spore populations
decayed exponentially at rate δ while the loners decayed exponentially at rate
µ > δ. At the end of the starvation time, a new resource pulse of size 108

arrived.
Invasion Analysis. Residents were established at an initial abundance of 108

and invaders with initial abundance equal to a half that of the resident. Single
patch growth-starvation cycles were run for 1000 cycles and replicated 4 times.
If the invader had, on average across replicates, a higher abundance than the
resident at the end of the 1000th growth phase, the corresponding square in the
pairwise invasibility plot (PIP) was colored black, otherwise the corresponding
square was colored white. The diagonal entries, where residents and invaders
were neutral, were not simulated but instead set to black as a default.

Sensitivity analysis. Parameters c, µ, δ, τ , s and R0 were varied to study
their e�ects. Our estimates of αESS and α∗, were obtained by running 20
replicate single-patch simulations for 1000 growth/starvation cycles each, and
�nding the αi with the highest abundance, on average across replicates.

Multiple environments (patches). We ran simulations of two patches
undergoing desynchronized growth-starvation cycles, with dispersal from one
patch to the other happening during spore formation at the end of the dispers-
ing patch's growth period. At the end of growth, a fraction D of the successfully
formed spores moved to the neighboring patch while 1−D stayed at the home
patch after which newly formed spores were governed by the same delay assump-
tions as in the single patch. One patch was chosen as a Òslow-recoveryÓ patch
in which starvation times were drawn from an exponential distribution with
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Table of notation and parameter values

Parameter Use Value

c consumption rate 0.173 (4-hour doubling time)

R1/2 resource concentration at which 107

the reaction rate is at half-maximum

R0 resource input after starvation 108

s fraction of aggregating cells that become viable spores 0.504

τ time needed for spore germination 4 hours

µ death rate of amoebae 0.002

δ death rate of spores 0.0002

α, β fraction of aggregating amoebae variable

T length of starvation variable

λT average length of starvation variable

Table 1: Table of notations used in the text and the baseline parameter values used for simulations,

unless otherwise speci�ed in the �gure legends.

high average time λT , and the other patch was chosen to be a Òfast-recoveryÓ
patch with low λT . To explore the e�ect of the similarity between patches, we
varied the di�erence between the high and low λT 's.

Sampling Trajectories. In both single patch and 2-patch simulations, trajec-
tories were sub-sampled to reduce the memory costs of simulations and interpo-
lated at the same timepoints to allow averaging across replicates. Sub-sampling
of trajectories was performed by noting the time and population vector for a
patch at the end of that patch's growth phase. For the two desynchronized
patches, this means that the sampling times of each patch di�er, as patch i was
only sampled at the end of patch i's growth period. To later obtain average
trajectories such as those displayed in Fig C.1 and C.2, the sampling times and
population vectors of each patch were interpolated at 1000 equally-spaced time
points on the shortest time-interval of all the replicates being averaged.
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References

Dubravcic D, van Baalen M, Nizak C (2014). An evolutionarily signi�cant uni-
cellular strategy in response to starvation stress in Dictyostelium social amoebae
[v1; ref status: awaiting peer review, http://f1000r.es/3hg] F1000Research 2014,
3:133 (doi: 10.12688/f1000research.4218.1)

Fey, P., Dodson, R., Basu, S., Chisholm, R. L. (2013). One Stop Shop for Every-
thing Dictyostelium: dictyBase and the Dicty Stock Center. Dictyostelium dis-
coideum Protocols. Methods Mol. Biol. 983:59-92, edited by Ludwig Eichinger

27



and Francisco Rivero.

Francis, D. and Eisenberg, R. (1993). Genetic structure of a natural population
of Dictyostelium discoideum, a cellular slime mould. Mol Ecol. 2(6):385-391.

Michaelis, L, Menten, ML (1913). ÒDie Kinetik der InvertinwirkungÓ. Biochem
Z 49: 333-369.

28



Chapter 2: Prey carrying capacity

modulates the e�ect of predation on prey

diversity

Jacob Socolar1, Alex Washburne2

Author a�liations:
1Department of Ecology and Evolutionary Biology, Princeton University.
2Program for Quantitative and Computational Biology, Princeton University.
Author emails: 1jacob.socolar@gmail.com; 2awfour@princeton.edu
Both authors contributed equally to this work.

Keywords: Predator; Coexistence; Prey-switching; island biogeography; stochas-
tic dynamics
An expanded version of this paper has been accepted at The American Natu-
ralist.

29



Abstract

Understanding the role of predation in regulating prey diversity is a major goal
in ecology, with profound consequences for community dynamics, ecosystem
structure, and conservation practice. Deterministic di�erential equation models
predict that some predation regimes, such as prey-switching predation, should
promote prey coexistence and increase prey diversity. However, such models
do not capture stochastic population �uctuations that are ubiquitous in empir-
ical study sites and nature reserves. In this paper, we examine the e�ects of
prey-switching predation on the species richness of prey communities with de-
mographic noise. We show that in �nite, discrete prey populations, the ability of
prey-switching predation to promote diversity depends on the carrying capacity
of the prey community and the richness of the source pool for prey. Identical
predation regimes may have opposite e�ects on prey diversity depending on the
size and productivity of the habitat or the metacommunity richness. Statistical
properties of the �uctuations of prey populations determine the e�ect of stabi-
lizing mechanisms on species richness. We discuss the implications of this result
for empirical studies of predation in small study areas and for the management
of small nature reserves.
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Introduction

Predators in�uence numerous features of biological communities, including the
diversity of their prey (Terborgh and Estes, 2010). Intuitively, predators may
reduce prey diversity by eating their prey into oblivion (Schoener and Spiller,
1996; Blackburn et al., 2004), but they also can promote prey diversity by reduc-
ing interspeci�c competition (Paine, 1969; Chase et al., 2002). This diversity-
promoting e�ect occurs when predators consume a potentially dominant prey
species (Paine, 1966) or when specialist predators prevent any prey species from
becoming abundant (Terborgh et al., 2001; Janzen, 1970; Connell, 1971).

Much of the literature on predator-mediated coexistence has focused on dif-
ferential equation models (Chesson, 2000; Chase et al., 2002). In �nite popula-
tions, however, demographic stochasticity may play a signi�cant role in observed
community dynamics, especially when species are rare (Turelli, 1980; Nisbet and
Gurney, 1982; Lande et al., 2003). Prey populations in a single study area or
nature reserve may be su�ciently small that stochastic processes in�uence im-
portant system properties, including species richness. A nuanced understanding
of predator-mediated coexistence in �nite populations requires a trophic theory
of island biogeography that explores how predators in�uence inherently stochas-
tic colonization/extinction dynamics and statistical patterns of richness in small
prey communities (Holt, 2009).

Nascent trophic theories of island biogeography assume that �nite predator
and prey populations interact stochastically, but thus far have treated a limited
subset of predator-prey interactions, namely where predators do not a�ect prey
populations, an assumption termed donor control (Holt, 2009; Gravel et al.,
2011). Contrary to the assumption of donor control, predators generally re-
duce the mean population sizes of their prey, thereby increasing the probability
of stochastic extinction, all else being equal (Holt et al., 2008). Thus, when
analyses of Lotka-Volterra style models predict that predation should promote
diversity by increasing the relative �tness of an invader, the actual impact of the
predator on a �nite prey population is unclear. In very large prey populations,
stabilizing predation regimes should reliably increase prey diversity. In su�-
ciently small prey populations, the elevated risk of stochastic extinction may
outweigh the stabilization a�orded by a particular predation regime.

Elucidating the e�ects of predation on the diversity of �nite communities
has rami�cations for empirical studies of predation and for protected area man-
agement. Empirical studies of small populations may fail to detect a diversity-
promoting e�ect of predators even when that role indeed exists in larger natural
communities. On the other hand, a predator's diversity-promoting e�ect may
vanish in small populations, leading theory and large-scale empirical studies to
make perverse management recommendations for small nature reserves.

In this paper, we describe and implement a family of stochastic simulations
to elucidate the e�ects of stabilizing predation on the species richness of �nite
prey communities. We focus on prey-switching predators that change their be-
havior through time to consistently target the most abundant prey (Murdoch,
1969; Holt, 1984; Abrams and Matsuda, 1996, 2003, 2004). In di�erential equa-
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tion models, such predators stabilize prey communities via negative frequency
dependent selection, provided that the predator does not deterministically drive
its prey extinct. This fact, coupled with the simplicity of a single prey-switching
predator (compared to myriad specialist predators), makes prey-switching pre-
dation an attractive regime for investigating the tension between stabilizing
ecological interactions and intensi�ed stochasticity resulting from predation.
Furthermore, empirical evidence documents prey-switching predators in nature:
various predators form search images (Martin, 1988) or shift the timing (e.g.
Elliott, 2004) and/or location (e.g. Murdoch, 1977) of foraging to better target
abundant prey resources (Smout et al., 2010).

In �nite prey populations with demographic variation in lifetime and fe-
cundity, we �nd that for a given prey-switching predation regime, there is a
critical prey carrying capacity above which predation increases mean prey rich-
ness relative to a zero-predation community, and below which predation de-
presses prey richness. This carrying capacity is determined by tension between
the stabilizing e�ect of prey-switching predation and the destabilizing e�ect of
reduced prey abundance. Increasing metacommunity species richness shrinks
the region of parameter space where prey-switching predation increases diver-
sity. These results can be understood in terms of the statistical properties of
colonization/extinction dynamics in the presence and absence of predators.

Methods

We wish to investigate the dynamics of a community that is subject to both
stabilizing predator-prey interactions and demographic stochasticity. To do so,
we use a simulation model that we describe and motivate in three steps. First, we
present a system of ordinary di�erential equations that captures the stabilizing
predator-prey interaction in our model. Second, we build a stochastic process
that corresponds to the deterministic system with added demographic noise.
By corresponds to, we mean that over in�nitesimal time windows the expected
change in the stochastic community (conditioned on its current state) equals
the deterministic change of the system of di�erential equations. Third, we
supply the computational details of how we simulate the stochastic process (see
supplemental material for computer code). We summarize the simulations that
we present in this paper, including sensitivity analysis and modi�cations to the
model that we use to evaluate the robustness of our results to relaxations of
various model assumptions.

The deterministic system

Predator-Prey Model

Considerable work has been done in the analysis of prey-switching predators in
deterministic, continuous, well-mixed systems (e.g. see Holt, 1984; Abrams and
Matsuda, 1996, 2003, 2004). To marry our study with their work, we construct
a di�erential system similar to theirs to govern the stabilizing dynamics in our
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simulations. We conceptualize a predator-prey community on a patch or island,
where population dynamics are the outcome of birth and death processes and a
small immigration rate. We begin by writing general equations for a well-mixed,
continuous-state predator-prey system with one predator and one prey.

dN

dt
= rN

(
1− N

K

)
+m− ρP N

K
(1)

dP

dt
= αρP

N

K
− δP.

The prey population N grows logistically with an intrinsic growth rate r, a
carrying capacity K, a small immigration rate m, and removal via a bilinear
(Holling type I) predation term that depends on the predator population P and
the predation rate ρ. Eventually, we explore other functional forms for predation
to assess the robustness of our results.

The predator population increases as it harvests prey, but decreases via a
constant death rate δ. The paramter α−1 represents the average number of prey
that a predator must consume in order to replace itself. The model has a single
non-trivial equilibrium at

N̄ =
δK

αρ
(2)

P̄ =
rK

ρ

(
1− δ

αρ

)
+m.

The non-trivial equilibrium is stable when P̄ > 0 or, for m ≈ 0, ρ > δ
α . Equilib-

rium prey populations decrease monotonically with ρ whereas P̄ is maximized
when ρ ≈ 2 δα .

We obtain a simple multi-species version of the system by assuming neutral
competition among prey:

dNi
dt

= rNi

(
1−

∑
Nj
K

)
+m− ρP Ni

K
(3)

dP

dt
= αρP

∑
Nj
K

− δP.

These equations represent a mean-�eld neutral prey community subject to non-
selective predation.

We assume neutrality in the prey community not because we believe prey
communities to be neutral in their dynamics, but as a parsimonious starting
point. A neutral prey community allows us to explore the role of prey-switching
predators in maintaining prey diversity without being overwhelmed by the large
space of particular assumptions about competitive interactions between prey
species. We break the neutral assumption when we incorporate prey-switching,
but the neutral prey community remains a benchmark against which we compare
communities containing prey-switching predators.
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Prey Switching

We now modify the predation term to incorporate prey-switching. We do so
with a term that allows us to vary the strength of prey-switching independent
of the total amount of prey consumed. Thus, we retain the overall predation

rate ρP

∑
Nj

K , but we select which prey species is killed based on its relative
abundance using a tunable parameter z that determines the strength of prey-
switching. By de�nition, prey-switching predators preferentially target more
abundant prey, so that the diet ratio of species i and j, fi (N) /fj (N), increases
more quickly than the ratio of those species' abundances, Ni/Nj . Many func-
tional forms of the species-speci�c predation rate have been implemented for
prey-switching predators (reviewed by van Leeuwen et al., 2013; Morozov and
Petrovskii, 2013). For its algebraic simplicity, we use the form

fi (N) = ρP

∑
Ni
K

(Ni)
z∑

j (Nj)
z (4)

with z ≥ 1. This yields identical diet ratios to the form used by Elton and Green-

wood (1970), but the community-wide predation rate remains ρP

∑
Nj

K regard-
less of the value of z. van Leeuwen et al. (2013) critique Elton & Greenwood's
form and derive a more principled�but more complex�alternative based on
an individual-based encounter process. For our purposes, a critical advantage
of our phenomenological functional form is the ability to vary prey-switching
independent of the overall predation rate. This property allows us to develop
intuition about our stochastic system by decomposing a prey species' variance in
abundance into the whole-community variance a�ected by ρ and the between-
species covariance a�ected by z. We later demonstrate that our results are
robust to incorporating the functional form of prey-switching predation covered
by van Leeuwen et al. (see Robustness Checks, below).

The full community dynamics are thus given by

dNj
dt

= rNj

(
1−

∑
Nj
K

)
+m− ρP

∑
Nj
K

(Nj)
z∑

(Ni)
z (5)

dP

dt
= αρP

∑
Nj
K

− δP.

This system of n species of prey and one predator has one predator-free
�xed point where P̄ = 0 and N̄tot = K, and one predator-containing �xed
point where N̄tot = δK

αρ , where by symmetryN̄j = δK
αρn for all prey species j and

P̄ = rK
(

1− ¯Ntot

K

)
. As for the 1-prey 1-predator system in equation 1, the

predators can persist when ρ > δ
α .

The stochastic system

We construct a stochastic analog to equation 5 in a manner similar to Haege-
man and Loreau (2011). Populations are composed of discrete individuals, and
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populations increase or decrease by one individual as a result of four fundamen-
tal events: prey birth/migration, natural prey death, predation, and predator
death. We assume that these events occur at exponentially distributed time in-
tervals. We then construct a stochastic process by de�ning propensities of these
four events to ensure that over short (in�nitesimal) timescales the expected
change in the stochastic system per unit time follows the trajectory de�ned by
equation 5. We assume that prey competition results in a density-dependent
birth process, while death is density-independent. Respectively, the propensities
are:

n+
j (N, P ) = max

{
0, rNj

(
1−

∑
Nj
K

)
+m+ γjNj

}
(6)

n−j (N, P ) = γjNj

p̃+ (N, P ) = ρP

∑
Nj
K

p− (N, P ) = δP

where n+
j is the propensity of birth/migration events of species j, n−j is the

propensity of natural death events of prey species j, p̃+ is the propensity of
predation events community-wide, and p− is the propensity of predator deaths.
Each event has a speci�c impact on the community. Birth/migration in species
j causes a unit increase in the population of species j (and consequently in∑
Nj), while a natural death causes a unit decrease. Predation causes a unit

decrease in the prey community size
∑
Nj , and the decrease occurs in species j

with probability
(Nj)z∑

(Ni)
z . To account for the imperfect trophic e�ciency in our

di�erential system (equation 5), each predation event has a probability α < 1
of causing a unit increase in the predator population. Predator deaths cause
a unit decrease in the predator population. To ensure that predators don't go
extinct, we set a re�ecting wall at P = 1, so the predators can never have fewer
than one individual in the population.

The parameters γj allow the possibility that di�erent prey species have di�er-
ent intrinsic per-capita death rates, and consequently di�erent average lifetimes,
1/γj. Allowing γj to vary by species enables us to change the generation times
of prey independently without disrupting the mean-�eld dynamics.

To con�rm that this stochastic model produces trajectories over short time
intervals whose mean is given by equation 5, note that as long as

∑
Nj is not

much larger than K (more precisely, as long as rNj

(
1−

∑
Nj

K

)
+m+γjNj > 0),

the expected change in a prey species' abundance ∆Nj over a short time interval
∆t is

E [∆Nj |4t] = n+
j − n

−
j (7)

= rNj

(
1−

∑
Nj
K

)
+m− ρP

∑
Nj
K

(Nj)
z∑

(Ni)
z ,
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and likewise the expected change in predator abundance in some small unit time
is

E [∆P |4t] = αρP

∑
Nj
K

− δP. (8)

Note further that the model rarely attains value of
∑
Nj large enough to cause

the mean trajectories to deviate from the deterministic expectation. Birth rates
drop to zero as the community approaches this value, and deaths are much more
frequent than migrations.

One crucial di�erence between the stochastic model and its deterministic
analog is the tendency for the stochastic model to display oscillatory dynamics.
In our model, such oscillations result from the resonant ampli�cation of de-
mographic stochasticity (McKane and Newman, 2005); similar e�ects can also
result from exogenous environmental stochasticity Nisbet and Gurney (1982).
Below (see Robustness checks), we also consider a non-oscillatory system to
con�rm that our main results are not peculiarities related to quasicycles in
stochastic Lotka-Volterra systems.

Robustness checks

We wish to ensure that the species richness patterns predicted by our model are
not artifacts peculiar to the Lotka-Volterra system that we implement. There-
fore, we also consider several related systems which serve as robustness checks
for our general results.

Predator functional responses

To begin, we consider deviations from the Holling Type I functional response
and the simple form of prey switching that we have discussed thus far. First, we

replace the unbounded, linear predation term f (N) = ρ

∑
Nj

K with a saturating

Holling type II term f (N) =
ρ

∑
Nj

K

1+ρh

∑
Nj

K

where ρ is the attack rate and h is the

handling time. Second, we consider a mechanistically justi�ed functional form
for prey-switching derived by van Leeuwen et al. (2013). In their model, the per-
predator rate of consumption of prey species i in an n-species prey community
is

fi (N) =
ρiÑi

∑n
k=1 sikρkÑk∑n

k=1 ρkÑk

(
1 +

∑n
j=1 skjTkjρjÑj

) (9)

where ρi is the attack rate of predators on species i, sij is the similarity
of species i to species j, Tij is the handling time (the average time required

between catching species i to attacking species j) and Ñi = Ni

K is the density
of species i (Figure S6). For our purposes, we set Tij = 0.5; sij = 0.5 for i 6= j
and sij = 1 for i = j; and ρi = ρ constant for all species i.
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Invariant and independently �uctuating predators

In the presence of demographic stochasticity, Lotka-Volterra systems can ex-
hibit strong oscillatory behavior as a result of resonant ampli�cation of de-
mographic stochasticity, and indeed our simulations exhibit strong oscillations
(Figure S7). The resulting community-wide prey bottlenecks increase extinc-
tion rates, thereby reducing the likelihood that a prey-switching predator will
increase diversity. Because oscillations are not ubiquitous in real-world predator-
prey systems, we also examine a non-oscillatory system. To do so, we replace
the predator from the Holling type II di�erential system with a constant preda-
tor population P̄ , equal to the equilibrium population from that system. This
invariant predator population consumes prey with a Holling type II functional
response.

These systems produce predator-prey dynamics with considerably reduced
variance compared to the oscillatory cases. To increase the predator-induced
variance without producing quasicycles, we construct analogous systems where
the predator population is not constant, but instead varies according to a dis-
crete Ornstein-Uhlenbeck process with propensities

p+ = λP̄ + γP (10)

p− = (γ + λ)P

where P̄ is the equilibrial predator population in the corresponding Holling type
II system. As before, we set a re�ecting wall for the predator population at
re�ecting wall at P = 1. The variation in predator abundance is independent of
the prey abundance, and we refer to this system as an independently �uctuating
predator system.

Species-speci�c generation times

By using a single intrinsic prey death rate across species, we might create a
system that is unreasonably prone to instability and oscillation. We address this
issue by examining prey species with di�erent generation times (see Appendix I;
Table S2). For these systems, we implement a Holling type I functional response
in the predator. Note that the community dynamics are no longer consistently
neutral, even without prey switching (see Appendix II).

Density-dependent death

In our model, density dependence exists in the prey because birth rates decline
as prey increase. A more general model of density-dependence is

n+
j (N, P ) = max

{
0, rNj − β

r

K
Nj
∑
i

Ni +m+ γjNj

}
(11)

n−j (N, P ) = γjNj + (1− β)
r

K
Nj
∑
i

Ni
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where β = 1 is our density-dependent birth model. As a robustness check, we
consider a model of density-dependent death, β = 0. Populations with density-
dependence entirely in death are more volatile and thus have higher long-term
variances in population size and qualitatively di�erent extinction-colonization
dynamics following predator introduction (see Appendix II).

Metacommunity richness

To investigate the in�uence of the metacommunity richness M on the ability
of predation to promote diversity, we simulate communities with Holling type
I predation across the full range of values of ρ and K used in this paper for
M ∈ {10, 20, 40}. Additionally, for K = 1000 and M ranging from 10 to 360,
we determine the attack rate ρ∗ above which predators suppress diversity below
the neutral expectation (see Appendix II).

Simulations

We simulate predator-prey communities using MATLAB R2013b. MATLAB
code for simulation is available in the supplementary materials, described in
Appendix VI. We implement simulations using a Gillespie algorithm (Gillespie,
1977) in which timesteps are drawn from an exponential distribution whose rate
constant, η, is the inverse of the total propensity for events of any kind

η =

(p̃+ + p−
)

+
∑
j

(
n+
j + n−j

)−1

. (12)

At the end of each timestep, a single event is selected with probability propor-
tional to the event's propensity. The time and state of the system are updated,
and the process repeated for T time units.

Parameter choices and initial conditions

To ensure biological realism in our simulations, we turn to the empirical lit-
erature to inform our parameterizations. Throughout this paper, we �x the
prey death rate γ = 0.1. This is a free choice that speci�es the timescale, and
the remainder of the parameters are chosen relative to γ. Table 1 (Holling
type I model) and Table S1 (all models) give the numerical values and biolog-
ical interpretations for all simulation parameters. We encourage the reader to
visit Appendix I, where we outline parameter estimation for our model, draw-
ing on empirical investigations of demographic parameters, trophic e�ciencies,
predator-prey biomass ratios, trophic cascades, and so forth. Similar measure-
ments, if available, can be used to parameterize our model for any particular
natural system. In each simulation, we initialize the community near its equi-
librium in the corresponding parameterization of the mean-�eld model, thus
ensuring that transient dynamics alone cannot account for di�erences between
the stochastic system and the mean-�eld equilibrium.
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Table 1: Parameters for Holling type I model

Parameter units Value(s) Interpretation

δ time−1 0.1 Intrinsic prey deathrate;
inverse prey lifespan

γ time−1 0.05 Intrinsic predator deathrate;
inverse predator lifespan

r time−1 5 Maximum prey population
growth rate

K prey 200 � 2000 Carrying capacity; system size;
inverse competition intensity

M species
30;

10 � 360 (�g. 3)
Metacommunity richness

m prey
time 0.3 Migration rate

α predators
prey

10−3 Ratio of predator births
to predation events

ρ prey
predators·time 0 � 500* Predator attack rate

(prey deaths per predator)

z � 1 � 2 Prey-switching exponent
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Stationarity check

We are interested in the asymptotic or stationary species-richness of commu-
nities at island-biogeographic equilibrium. To simulate this quantity, we must
determine the relaxation time required to ensure that the imprint of initial con-
ditions fades and the system reaches dynamic equilibrium. For every simulated
result in this paper, we present a stationarity check in the supplement. Each
�gure in the paper corresponds to an equivalently numbered supplementary �g-
ure in Appendix III that presents the �nal result alongside results obtained by
stopping the simulation after shorter time intervals. These stationarity checks
con�rm that even as we vary functional forms and parameters, simulations ap-
proximate the stationary species richness by T = 2000.

Transient dynamics

Experimental manipulations of predation (Bangs and Fritts, 1996; Schoener and
Spiller, 1996; Heinlein et al., 2010) result in transient dynamics. Experimenters
might wish to know whether the dynamics observed following a predator intro-
duction provide reliable information about the eventual stationary state. To
explore this question, we simulate predator introductions into a predator-free
community. We consider the introduction of one individual predator with or-
dinary population dynamics and a Holling type I functional response, and also
of an invariant, equilibrium-sized predator population with a Holling type II
functional response (mimicking studies that monitor an experimental predator
introduction for less time than is typically required for predators to reproduce;
e.g. Heinlein et al., 2010; Stier et al., 2014). We monitor the dynamics by ex-
amining the community state every 0.25 time units for 50 time units (5 prey
generations). Across the full range of values examined for ρ and K, we simulate
predator introductions into twenty independent replicate prey communities near
stationarity (see Appendix II for details). We ask whether the initial change in
species richness is in the same direction as the �nal change, and we examine
patterns in the time evolution of richness towards stationarity.

Results

Species richness landscapes

As expected, predators that do not engage in prey-switching (z = 1) never
increase prey diversity for any value of the prey carrying capacity K. For such
predators, any increase in predation intensity leads to a decrease in the average
prey species richness. Prey-switching predators, on the other hand, increase
diversity at low attack rates and high values of K, and this e�ect becomes more
pronounced as z increases (Figure 1). These results are all in line with the
predictions of the mean-�eld model.
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Figure 1: Local prey species richness relative to metacommunity richness as a function of the

carrying capacity K, predator attack rate ρ, and prey-switching exponent z in a Holling type I

predator-prey community. Prey-switching predators increase prey diversity only when attack rates

are su�ciently low, and the range of diversity-promoting attack rates decreases as K gets small. All

data points represent the averaged richness of 4 communities simulated for T = 20000 time units.

See Figure S1 for stationarity checks.

However, for every value of z examined, su�ciently high predation rates lead
to decreased diversity (Figure 1). For a particular value of K, the neutral com-
munity at ρ = 0 serves as a baseline for species-richness in absence of predators.
There always exists an attack rate ρ∗ above which even a prey-switching preda-
tor depresses diversity below that of the predator-free community. The value
of ρ∗ increases monotonically with K. Thus, the identical predation regime
can promote diversity for large K and inhibit diversity for small K. The qual-
itative pattern in prey species-richness as a function of ρ and K is robust to
several variations in our model assumptions, including a saturating (Holling II)
predation rate, invariant and independently �uctuating predator populations,
species-speci�c generation times for predators and prey, a di�erent functional
form for prey-switching introduced by van Leeuwen et al. (2013), and prey
density dependence via death rates instead of birth rates (Figure 2).
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Figure 2: The qualitative patterns evident in Figure 1 are preserved across a variety of alternative

models for predator-prey dynamics. All data points represent the relative richness of the local

community to the metacommunity richness averaged over 4 communities simulated for T = 2000

time units. Note the di�erent scale for predator attack rates ρ for the van Leeuwen and Density

dependent death simulations (see appendices I & II for explanation). See Figure S2 for stationarity

checks.
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In all cases where z > 1, the prey species-richness isoclines are wedge-shaped
contours that can be identi�ed either by their species richness or by the carrying
capacity K of the predator-free neutral community that yields the same average
species richness. The lower boundaries of the species-richness isoclines change
only slightly with K and very rapidly with ρ, especially around ρ = 50, which
is the minimum value of ρ required for the persistence of the predator in the
mean-�eld model; these lower boundaries de�ne the region where increasing
predation intensity will increase prey community diversity. The slope of the
upper boundaries of the species-richness isoclines, and therefore the width of the
wedge, increases as the amount of prey switching increases. As expected, more
strongly prey-switching predators promote diversity across a broader region of
parameter space.

The metacommunity richness M also plays a role in determining the attack
rate ρ∗ above which prey richness decreases below the predator-free average.
Increases in M lead to decreases in ρ∗, meaning that predation is less likely to
promote prey diversity in speciose metacommunities (Figure 3a). However, even
in highly speciose metacommunities, prey-switching predators promote diversity
across a broad range of parameter space as long as K and z are su�ciently high
(Figure 3b).

Figure 3: For constant K = 1000, increasing metacommunity richness decreases the range of pre-

dation intensities over which prey-switching predation improves species richness. (A) ρ∗ decreases

with increasing metacommunity richness. (B) Prey switching increases species richness over a nar-

rower range of ρ, K, and z when prey metacommunities contain more species. See Figure S3 for

stationarity checks.

Variance and quasicycles

Invariant or independently �uctuating predators tend to promote diversity over
wider ranges of attack rates than predators with ordinary population dynamics
(Figures 1 & 2). These di�erences can be understood in terms of the e�ect of
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predators on prey population variance, which shapes the diversity landscapes of
Figures 1 & 2 because the likelihood of extinctions increases when the popula-
tion size decreases to below-average values. For all functional forms explored in
this paper, predators increase the variance relative to the mean of the total prey
population. Some functional forms, including Holling types I and II with or-
dinary predator population dynamics, cause oscillatory behavior and especially
large increases in relative variance.

Because the expected community size grows linearly with K, a system-size
expansion in K (van Kampen, 1981) suggests that the variance in community
size should also grow linearly with K. The variances calculated from the repli-
cate simulations behind Figure 1 indeed show approximately linear increases
(Figure S7a). This trend becomes apparent only when communities with and
without predators are disaggregated. Controlling for the expected community
size, communities with Holling type I predators have variances roughly one hun-
dred times that of communities without predators (Figure S7a). This massive
increase in variance manifests as sustained periodic oscillations in the total com-
munity size (Figure S7b-d). These noise-induced oscillations, referred to as qua-
sicycles, result from the interaction of predator-prey feedback and demographic
stochasticity, and they persist even when the predator and every prey species
has a species-speci�c death rate. Quasicycles substantially increase the variance
in prey population beyond what could be expected without predator-prey feed-
back (Nisbet and Gurney, 1982; McKane and Newman, 2005). The increase in
variance is associated with bottlenecks in total prey abundance (Figure S7b).

Comparing the species richness plots (Figures 1 & 2) for Holling type I & II
predators and invariant predators (which do not produce quasicycles), we see
that the increased variance associated with the quasicycle shrinks the region of
parameter space where predators promote diversity. By comparing the invari-
ant and independently �uctuating predators, we see that variation in predator
populations reduces the ability of a prey-switching predator to maintain diver-
sity. However, we also see that prey population size still modulates the e�ect of
predation on prey diversity, even in the absence of quasicycles.

Transience

Following the introduction of a predator to a predator-free community, the ex-
pected species richness of a community enters a transient period before converg-
ing to the stationary expectation. For most parameter combinations, the initial
change in species richness is in the same direction as the long-term change.
However, when predators weakly reduce prey richness in the long term (ρ is
slightly greater than ρ∗), predator introduction may cause a transitory increase
in prey richness (Figures 4 & S14). This e�ect is most pronounced when the in-
troduction involves a single individual predator. In this case, the transient e�ect
on species richness probably results from the transient growth of the predator
population. Because the per-prey attack rate is given by the product ρP , a
predator population that has not yet reached its equilibrium abundance has
exactly the same e�ect on prey dynamics as a larger predator population with
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Figure 4: Predator introduction causes transient changes in prey richness generally in the same

direction as the long-term change. However, introducing predators that weakly suppress richness in

the long term can increase richness in the short term. The e�ect is most pronounced for introductions

of small (sub-equilibrial) predator populations that exhibit transient growth. Trajectories show the

average richness of twenty replicate communities (see Appendix II).

a lower attack rate. Even in the case of invariant predation, substantial time
may pass before diversity begins to decline, presumably because the predator
initially targets abundant species and is unlikely to kill rare species until the
relative abundance distribution evens out (Figure 4).

Extinctions and species richness

A formal treatment of species richness in our model requires an examination
of prey extinction-colonization dynamics. In this section, we combine simula-
tions and analytic results to develop intuition for how prey-switching predators
increase or decrease prey diversity in an island biogeographic context, where
species richness is determined by a colonization-extinction equilibrium.

Predators do not directly a�ect colonization rates; they a�ect species richness
entirely via extinctions. The propensity of extinctions at time t is

ψ−(t) = n−1 (t)Ψ1(t) (13)

where n−1 (t) is the propensity for death of a singleton and Ψ1(t) the number of
singletons in the community. The average rate of extinctions is the expectation
of equation 13 over the stationary distribution of community composition.

E
[
ψ−] = E

[
n−1
]

E [Ψ1] + Cov
[
n−1 ,Ψ1

]
. (14)

To reduce extinction rates, a stabilizing mechanism must su�ciently decrease
the expectation of n−1 , the expectation of Ψ1, and/or the covariance between
n−1 and Ψ1.
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Therefore, to understand how the parameters ρ, z, and K a�ect species
richness, we need to understand how they a�ect the means and covariance on the
right side of equation 14. We estimate analytically (Appendix V) and show by
simulation (Figure 5a) that n−1 increases with ρ and decreases withK and z. We
show by simulation that for z > 1, the covariance Cov

[
n−1 ,Ψ1

]
increases with ρ,

and that the e�ect is larger for small values of K and large values of z (Figures
5a & S8). Analysis of the e�ect of model parameters on Ψ1 and the covariance
Cov

[
n−1 ,Ψ1

]
is di�cult (Appendix V) but simulations suggest that a U-shaped

relationship between Ψ1 and ρ accounts for much of the humped relationship
between ρ and species richness. The reduction in Ψ1 for intermediate ρ is
magni�ed by increasing K and/or z over the range of parameters we consider
in this paper (Figures 5a & S8).

Figure 5: (A) Species richness in our model is controlled by the extinction rate. Based on

equation 14, the scaling of species richness with ρ and K can be understood in terms of the scaling

of the expectation of Ψ1, the expectation of n−
1 , and the covariance between Ψ1 and n−

1 . (B)

Prey switching can increase the covariance between prey populations, pulling the distribution of

the population of a given species away from the boundaries where singletons occur and extinctions

take place.

To understand the e�ect of z on Ψ1, we note that z does not a�ect the to-
tal community size or its variance. Instead, z increases the covariance between
species by suppressing �uctuations in relative abundance (Figure 5b). We fur-
ther note that the variance of population size of a particular species, given that
it is present in the community, relates to the variance in the total community
size:

σ2
C = Sσ2

N + S (S − 1)σi,j (15)
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where σ2
C is the variance in community size, σ2

N the variance in population size,
and σi,j the covariance between populations of di�erent species. Symmetries
in our model ensure that σi,j is constant for all pairs of prey species. The in-
creased covariance σi,j necessarily entails a decrease in σ2

N . Thus, increasing z
decreases Ψ1 by moving the multivariate prey densities away from the bound-
aries where singletons occur (Figures 5b, S9). Prey-switching predation of the
van Leeuwen functional form similarly increases the covariance between prey
populations (Figure S9). Since frequency-dependent stabilizing mechanisms
like prey-switching predation dampen �uctuations in relative abundances, other
statistics beyond σ2

N and σi,j , such as the variance in relative abundance, σ2
R,

may yield useful scale-free proxies for extinction rates (Figure S13, Appendix
V).

Discussion

Whether in oceanic mesocosms, tropical islets, or remnant continental wildlands,
a �eld biologist always encounters �nite, discrete populations with stochastic
dynamics. Species appear and vanish from islands or study plots, and these
stochastic colonizations and extinctions are fundamental to metacommunity
theory and island biogeography. When di�erential equations approximate our
study systems well, they provide profound mechanistic insight and predictive
power (Paine and Levin, 1981; Perelson et al., 1996). But some systems display
important stochastic dynamics that cannot be captured by di�erential equations
alone. We have shown that when prey species richness is the variable of interest,
some predator-prey systems belong to this category across a range of parame-
ters that the �eld biologist might encounter in nature, particularly where the
intensity of competition between prey is high (K is small). Di�erential equa-
tions continue to provide important insight, and indeed they form the backbone
of our simulation model, but they fail to predict key features of our system.

For all of our simulations, simple analysis of the corresponding di�erential
equations suggests that the predator should stabilize the system and promote
prey diversity (Holt, 1984; Abrams and Matsuda, 1996, 2003, 2004). By incorpo-
rating demographic stochasticity in �nite populations, we show that the e�ect of
prey-switching predation depends predictably not only on the predator's attack
rate and degree of prey switching, but also on the prey carrying capacity and
the prey metacommunity richness. These variables together determine whether
a given predation regime will increase or decrease the richness of an otherwise
neutral prey community.

For a given prey carrying capacity K and prey-switching exponent z, there
is a critical predation intensity ρ∗ below which equilibrium prey richness is in-
creased relative to the predator-free community, and above which equilibrium
prey richness is reduced. Similarly, for a given attack rate ρ and prey-switching
exponent z, there is a critical community size K∗ below which equilibrium prey
richness is reduced, and above which prey richness is increased. Increasing the
metacommunity richness, M , decreases the relative abundance of each prey
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species and consequently decreases ρ∗. This fundamental result is robust to
several important variations in model assumptions, but it is invisible both to
stability analysis of ordinary di�erential equations and to analysis of island-
biogeographic communities which lack the niche detail of predator-prey inter-
actions.

We suspect that the phenomena described here are not restricted to prey
communities regulated by a single prey-switching predator, but might also
extend to communities regulated by a suite of specialist predators (Janzen,
1970; Connell, 1971) or generalist predators regulating hierarchically competi-
tive prey (Paine, 1966, 1969; Caswell, 1978). Any stabilizing predation regime
that increases prey death rates will result in a tension between stabilization
and stochastic intensi�cation to determine prey diversity. We chose to consider
prey-switching predators because simulations of a single prey-switching preda-
tor are simple to implement, easy to interpret, and contain fewer parameters
than simulations of an entire suite of specialist predators.

Empirical Consequences

We estimate our model parameters from the empirical literature (see Appendix
I). Doing so helps to ensure that the behavior we observe might exist in na-
ture, because it exists at reasonable values and combinations of parameters.
Moreover, our procedures for determining model parameters rely on empirically
available measurements from real-world systems. Our model can therefore be �t
to a real world system using empirical data that might reasonably be available.

Scale-dependence of predator e�ects

Predators are known to regulate prey diversity in many systems, sometimes
increasing prey diversity (Paine, 1966; Stier et al., 2014) and sometimes de-
creasing prey diversity (Schoener and Spiller, 1996; Crooks and Soulé, 1999).
Understanding the in�uence of predation on prey diversity is crucial for ecolo-
gists attempting to resolve the relative importance on top-down and bottom-up
processes as controls on ecosystems (Dobson, 2014) because in some systems,
predation is essential for the maintenance of species diversity (Terborgh, 2012).
Empirical observations of predation a�rm the theoretical notion that predators
create a rare-species advantage by targeting abundant prey (Murdoch, 1969;
Martin, 1988). Even when individual predators do not alter their preferences,
the numerical response of specialist predators can produce a similar e�ect.

It is unsurprising that this rare species advantage is not always su�cient to
ensure that predators increase prey diversity. With su�ciently large attack rates
(or numerical responses), predators increase the probability of prey extinction
regardless of switching. This result is con�rmed by many recorded instances
of predators decimating prey diversity to such an extent that prey switching is
unlikely to have ameliorated the consequences in any meaningful way (Savidge,
1987; Blackburn et al., 2004).
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The important insight from our models is that parameters other than attack
rates, such as the metacommunity richness M or the carrying capacity K, can
reverse the e�ect of predation on species richness. The carrying capacity K is
of considerable interest, because in nature it is controlled by factors such as
productivity and area. In systems where prey communities remain well-mixed
and productivity-per-area remains constant across a range of spatial extents,
horizontal slices of the plots in Figures 1 and 2 can be read as species-area rela-
tionships (SARs; Figure S10). Many predation regimes that increase diversity
at large spatial scales reduce prey diversity at small scales. This possibility
complicates the interpretation of empirical studies of the e�ects of predators on
prey diversity. Landmark studies of predation and prey diversity have occurred
at very small spatial scales, in mesocosms or on small islands (Schoener and
Spiller, 1996; Blackburn et al., 2004; Stier et al., 2014). For example, Spiller
and Schoener's (1998) seminal work on Bahaman spider communities and their
Anolis predators examined replicate communities with fewer than 300 spiders
each in the absence of predators, a value at the low-end of the range of the
parameter space that we consider. These studies have done an admirable job
elucidating the e�ects of predation at small scales, but caution is warranted in
applying the results to large blocks of continuous habitat.

Predators and prey frequently operate on di�erent spatial scales, with preda-
tors ranging across larger areas than their prey, and coupling spatially distinct
food webs (McCann et al., 2005). By con�ning both predators and prey to a
single well-mixed patch, our models fail to account for this reality. However, our
model results hold for both invariant predator populations and independently
�uctuating predator populations where predator dynamics are independent of
prey dynamics in the patch. Whereas the Holling type I model represents a
limiting case where predator populations respond strongly to prey populations
at the patch scale, these represent the opposite case, mimicking predators that
range so widely that the dynamics at the patch scale do not appreciably a�ect
the amount of predation experienced at the patch scale. Furthermore, experi-
mental manipulations of predation often com�ne prey and predators to a single
patch (Spiller and Schoener, 1998), or even restrict predator movement below
that which is available to prey (Stier et al., 2014).

Conservation in habitat fragments

Just as caution is warranted in extrapolating empirical results from small scales
to large, any empirical or theoretical understanding of the diversity-promoting
e�ects of a predator in a large, intact system might not apply in small isolates.
Habitat fragmentation is a ubiquitous global process that creates such isolates
(Wilcove et al., 1986; Skole and Tucker, 1993; Fahrig, 2003; Kareiva, 1987).
Increasingly, managing for predator persistence or reintroduction is viewed as
a tool to enhance conservation outcomes for species at lower trophic positions
through top-down e�ects (Nimmo et al., 2014). However, managing for predator
persistence (or reintroduction) in fragmented habitats may negatively impact
prey diversity even when the predator has unambiguous positive impacts in in-
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tact systems. Note, however, that our results are relevant for cases when the
focal species of conservation interest are potential prey. In some highly frag-
mented systems (e.g. Brazil's Atlantic forest), predators and prey alike are in
serious danger of extinction (Pardini, 2004). Our model shows that managers
cannot assume, based on the ability of prey to coexist with each other and with
their predators in large landscapes, that such coexistence will be maintained in
small forest reserves; in the face of evidence that predators enhance prey coex-
istence in large blocks of habitat, our model raises concern that fragmentation
could reverse the predator's bene�cial e�ect.

Coexistence in hyperdiverse communities

Our model predicts that predators are more likely to increase species richness
on habitat patches subject to immigration from a depauperate metacommunity
than on patches subject to immigration from a speciose metacommunity. On
its face, this result is contradicted by the mounting evidence that predation
plays a crucial role in the maintenance of diversity in hyperdiverse communities,
such as in humid tropical forests (Janzen, 1970; Connell, 1971; Bagchi et al.,
2014). However, at su�cient spatial scales switching predation continues to
increase diversity across a reasonably broad region of parameter space, even
in hyperdiverse communities. Furthermore, our results apply exclusively to
systems where predators reduce the total density of their entire prey guild to
substantially lower values than could be achieved in the absence of predation.
Because tropical trees compete ferociously for canopy space (Hubbell, 2001),
our model assumptions are probably invalid for tropical trees.

More individuals hypothesis

The tendency of predators to reduce diversity at small scales can be viewed as a
natural consequence of the more individuals hypothesis (Srivastava and Lawton,
1998), which suggests that sites containing more individuals tend to contain
more species and has received substantial empirical support (Hurlbert, 2004).
Where prey-switching predation decreases species richness in our models, it does
so partly by reducing the density of individuals, so a focal patch contains fewer
individuals and fewer total species. It is tempting to imagine that this sampling
e�ect causes a prey-switching predator to increase beta diversity, especially given
a prey-switching predator's tendency to increase diversity at large scales, but to
reduce diversity at small scales (Whittaker, 1960). However, this presumption
rests on a shaky premise, because our models of richness at small spatial scales
represent the richness of single small isolates, not of small patches integrated
into a larger landscape and interconnected by migration. Such a model would
be a useful extension of our work.
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Extensions

Our investigations leave multiple open questions for future work. One interesting
result from our simulations is that prey-switching predation increases the covari-
ance between time-series datasets of prey populations. The increased covariance
in communities subjected to prey-switching predation is due to prey-switching
predation dampening stochastic �uctuations in relative abundances. Although
the mean prey population sizes remain constant, the increased correlation with
increased prey-switching predation is a stochastic analog the observation that
prey-switching predation can change apparent competition to apparent mutual-
ism between prey species (Holt, 1977; Abrams and Matsuda, 1996): stochastic
decreases in the relative abundance of one species will lead to transient increases
in the death rates of other, more abundant species and so transient stochastic
increases in harvesting of one of two equally abundant species should lead to
a transient decrease in the abundance of the other species. The prey popu-
lations we've considered still satisfy Holt's notion of apparent competition in
the behavior of their means; this stochastic apparent mutualism exists only in
species that stochastically �uctuate about their mean. This increase in temporal
covariance between prey populations under prey-switching predation is empiri-
cally measurable - as is the hypothesized concomitant reduction in variance of
prey population size - and thus fruitful grounds for testing our hypotheses about
predators' e�ects on statistical properties of prey populations.

We hypothesize that the existence of ρ∗ and K∗ extend to more general
systems with frequency-dependent death in �nite, stochastic communities. This
points the way to future studies of predator-prey communities with multiple
predators, specialist predators/pathogens, non-neutral niche structure among
the prey, and extrinsic environmental variability. The degree of prey-switching
could be in�uenced by population size (Abrams and Matsuda, 2003), as well
as patterns in spatial variation of prey relative to the home range of predators.
Multi-patch extensions of our model could shed new light on species persistence
after habitat fragmentation (Terborgh et al., 2001), and could elucidate the
potential stabilizing and destabilizing impacts of predators that spatially couple
local food webs (McCann et al., 2005).

If ρ∗ and K∗ generalize to a large class of realistic top-down mechanisms
of biodiversity maintenance, then their scaling properties have major implica-
tions for our understanding of diversity in natural systems, the management
of predators, and reserve design. For example, if top predators such as wolves
(Becker, 2008) or lions (Bissett et al., 2012) exhibit very weak prey-switching,
they may have bene�cial e�ects on species richness that are only apparent in
large swaths of connected habitat containing large prey populations. Contem-
porary management decisions about reserve size such as the range expansion of
the Mexican Gray Wolf (Canis lupus baileyi) are often motivated by arguments
of population viability (USFWS, 2014), but the diversity of the predators' diet
(Reed et al., 2006; Merkle et al., 2009) and the potential scaling of the predators'
impact on the robustness of prey populations with reserve size would motivate
range expansions of prey-switching top predators on the basis of the viability of
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the prey. The large historical ranges of these top predators compared to their
smaller contemporary ranges mean that despite the predators' persistence their
full e�ects on ecosystem structure & function on the landscape scale are not
currently realized (Terborgh and Estes, 2010).
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Supplemental information:

Appendices I-VI

1 Appendix I: Parameter Estimation

We turn to the empirical literature where possible (and the theoretical literature
where necessary) to obtain realistic estimates for the parameters in our models.
Our goal is to ensure that our results of interest occur parameter values that
correspond to realistic natural communities. Table S1, an expanded version of
table 1, includes every parameter used in our models. Below, we explain our
choices of values for each parameter in turn.

Lifespans: δ and γ

The choice of δ is an arbitrary free choice that speci�es the timescale in our
model. We use δ = 0.1, and thus the expected lifetime of a prey (given that it
does not succumb to predation) is Tprey = 10. Because predators are generally
longer-lived than their prey, we set the per-capita death rate of predators γ =
0.05. Thus, predators have twice the average lifespan of their prey.

This choice re�ects the average body mass ratio of predators to prey (roughly
100 : 1; Barnes et al., 2010; Brose et al., 2006) and the allometric relationship
between body size and lifespan in mammals (log(lifespan) ≈ 0.2 log(body mass);
Sacher, 1959). Note, however, that the variance about both of these quantities
is large, and a wide range of ratios γ

δ are reasonable. Note also that in our
models, predators live on average more than twice as long as prey, because prey
lives are routinely cut short by predation.

Population growth: r and K

When a (predator-free) community is nearly empty, the prey population growth
rate r is given by r = δ (r0 − 1), where r0 is the average lifetime reproductive
output of an individual under conditions of abundant resources, and in the
absence of predation. Thus we obtain an estimate of r by obtaining values
of r0 from the literature. r0 is variable across real-world systems, and note
that in sexually reproducing species, r0 is obtained by dividing by two the
average number of o�spring per individual. Below, we provide a sampling of
empirical values: In absence of predation, a North American songbird might
have a lifespan of four years (Calder, 1990) and a reproductive output of perhaps
4 individuals per pair per year, given abundant resources (Martin, 1995). In
this case, r0 ≈ 8, and r ≈ 0.7 (in this example, one time unit is ≈ 0.4 years).
A black-billed whistling-duck (Dendrocygna autumnalis) might have a lifespan
approaching eight years (Clapp and Klimkiewicz, 1982), and a reproductive
output (under abundant resources and no predation) as high as 14 individuals
per pair per year (Rohwer, 1988), yielding r ≈ 5.6 (in this example, one time
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Table S1: Parameters used in MATLAB simulations

Parameter
matlab

Name Units Value(s) Interpretation

δ D time−1 0.1 Intrinsic prey deathrate;
inverse prey lifespan

γ G time−1 0.05 Intrinsic predator deathrate;
inverse predator lifespan

r r time−1 5 Maximum prey population
growth rate

K k prey 200 � 2000 Carrying capacity; system size;
inverse competition intensity

M M species
30;

10 � 360 (�g. 3)
Metacommunity richness

m m
prey
time 0.3 Migration rate

α alpha predators
prey

10−3 Ratio of predator births
to predation events

ρ p
prey

predators·time 0 � 500∗ Predator attack rate
(prey deaths per predator)

z z � 1 � 2 Prey-switching exponent

Additional Parameters used in Robustness Checks

h h predators·time
prey

10−3 Handling time
(Holling Type II)

Tij h predators·time
prey

10−3 Handling time
(van Leeuwen)

ρi p
prey

predators·time 0 � 1500 Attack rate
(van Leeuwen)

sij s � 1 if i = j
0.15 if i 6= j

Prey similarity
(van Leeuwen)

P̄ P0 predators rK
ℵ (1− γ

αℵ )† Mean predator population;
(Invariant and Indep. Fluctuating predators)

λ L time−1 10 Mean reversion
(Independently Fluctuating predator pop.)

δi and γ′ D(i) time−1 See table S2 Species-speci�c death rates
for prey and predator

* Note that in the density dependent death simulations, 0 ≤ ρ ≤ 1000. (Appendix II).

† Where ℵ = ρ(1− hγ
α
).
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unit is ≈ 0.8 years). A female harbor seal (Phoca vitulina) might have a lifetime
reproductive output of roughly 25 pups, yielding r ≈ 1.2 (Härkönen and Heide-
Jørgensen, 1990). Female adders (Vipera berus) in �eld conditions might have
a lifetime reproductive output of 10.5 o�spring on average, so a lower bound on
r in this system would be r = 0.43 (Madsen and Shine, 1994), while a female
leatherback turtle (Dermochelys coriacea) might lay 60 eggs every 5 years for 30
years after maturity, yielding r ≈ 17.9 (Avens et al., 2009; Price et al., 2004). In
insects, documented lifetime fecundities range from 5.2 to 2469, yielding a range
of r from 0.16 to 123 (Hon¥k, 1993). Among marine invertebrates, fecundity
under optimal conditions may be di�cult to estimate. For example, one sea hare
(Tethys californicus) can lay half a billion eggs in half a year, but an unknown
fraction (presumably very small) are fertilized and recruit into the population,
even under optimal conditions (MacGinitie, 1934).

We pick r ≈ 5 as a reasonable ballpark value; similar values (6.0± 0.4) have
been found for meadow voles (Microtus pennsylvanicus) (Turchin and Ostfeld,
1997).

We examine several values of K, all between K = 100 and K = 2000. The
upper bound corresponds roughly to, for example: the number of individual
birds breeding in one square kilometer of temperate or tropical forest (Terborgh
et al., 1990); the number of lizards in two square kilometers of dry Sonoran desert
(González-Romero et al., 1989); one tenth the number of �sh in a 3.8 hectare lake
(average depth 8 m) in Michigan (Brown and Ball, 1943); the number of trees
> 10 cm diameter-at-breast-height in four hectares of tropical forest (Condit
et al., 1999); or the number of bacteria in 10−4 grams of dry soil under maize
cultivation in China (Li et al., 2002). Note that in our model, K represents
the population density that would be realized in absence of predation, so the
densities mentioned above tend to be somewhat lower than the appropriate
densities for comparison. Counteracting this e�ect, population densities in our
model should be thought of as referring to one guild of competing species, and so
the densities mentioned above tend to be somewhat higher than the appropriate
densities for comparison.

As an aside, the web-spider communities studied by Spiller and Schoener
(1998) contained fewer than 300 individuals per replicate in the absence of
predators.

Colonizations: m and M

In our model, the colonization rate is determined by the migration rate m and
the number of species M − S present in the metacommunity but absent in the
local community. Realistic values for the metacommunity richness M range
from M = 1 (e.g. the richness of amphibians on Antigua and Barbuda) to
M > 600 (the number of breeding birds near Iquitos, Peru); M > 2000 (the
richness of reef �sh in the coral triangle�though some of these are narrowly
endemic to smaller sub-regions); or even M > 5000 (the richness of freshwater
�shes in the Amazon Basin�though again, many are sub-regional endemics).

In most of our simulations (all �gures except Figure 3), we use M = 30,
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which approximates the richness of snakes in the coastal plain of North Carolina,
the richness of ungulates in the arid savanna of central Kenya, the richness
of ladybirds in England, or the richness of birds breeding in a New England
hardwood forest (Holmes et al., 1986). We also test the e�ect of varying M ,
using values ranging from 10 to 360.

In our model, m represents the rate at which immigrant individuals of all
species arrive in the focal patch. Realistic values for m in nature vary tremen-
dously, depending on the isolation of the focal patch and the biology of the
focal guild. On remote oceanic islands, immigrations of terrestrial mammals
and reptiles are rare indeed. In �ow-through mesocosms, immigrations could
account for a majority of the individuals present. We use m = 0.3. Note that
at equilibrium, prey have on average one o�spring per lifetime, and in absence
of predation, prey therefore have one o�spring per δ−1 = 10 timesteps, and the
community produces K

10 o�spring per timestep. Thus for K = 2000, we expect
that migrants account for roughly 0.1% of individuals in the population, while
for K = 200, that �gure rises to over 1%.

Our choices of m and M should be viewed as somewhat arbitrary, except
that we chose them intentionally to produce partly-�lled communities for the
range of values of K that we consider. This allows both diversity-promoting and
diversity-suppressing e�ects of predators to express themselves in simulations.

Predator production: α

In our model, α represents the probability that a predation event will produce
an additional predator, and α−1 is the average number of prey that a predator
must consume in order to reproduce once. Our functional form assumes that
the numerical response of the predator population is a linear function of the
number of prey consumed, an assumption that is valid in at least some systems
(Lawton et al., 1975). Alpha depends on the e�ciency ε of biomass conversion
between trophic levels and on the biomass ratio τ of predators to prey: α = ε

τ .
In nature, the e�ciency of biomass conversion ε is variable because it depends
not only on the e�ciency of nutrient uptake in the digestive system and the
theoretical e�ciency of conversion by cells in culture, but also on the metabolic
costs associated with homeostasis and foraging (Calow, 1977). In a review of in-
vertebrates, Calow (1977) encountered minimum biomass conversion e�ciencies
of 11% in leaf-eating lepidopteran larvae, and maximum e�ciencies of ≈ 70%
in the mite Steganacarus magnus (with an outlying e�ciency of 95% in the sea
star Asterias rubens). Conversion e�ciencies in vertebrates are lower (5-25% in
juvenile salmon; Calow 1977), and as expected are lowest in endotherms (4.6%
in mice; Timon and Eisen, 1970). An absolute lower-bound to the e�ciency of
biomass conversion is the trophic e�ciency (the ratio of predator production
to prey production). In the North Sea, the estimated average trophic e�ciency
is 3.7%, while the estimated trophic e�ciency among organisms with mass less
than 256 g is 27% (Jennings et al., 2002).

The ratio τ of individual predator mass to prey mass is similarly variable in
nature. Extremes exist in marine systems, where the black swallower (Chias-
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modon niger) takes prey more massive than itself (τ < 1; Jordan, 1905), while
a blue whale (Balaenoptera musculus) subsists on Antarctic krill (Euphasia su-

perba) 380 million times less massive than itself (τ = 3.8 · 108; Tomilin, 1959;
Clarke, 1976). Average biomass ratios of 100:1 appear to be typical in marine
food webs (τ = 100; Jennings et al., 2002; Barnes et al., 2010). This ratio is
reasonable across a variety of systems (terrestrial and aquatic) and taxa (en-
dotherms and ectotherms), though endotherms tend to have higher ratios while
invertebrates tend to have lower ratios (Brose et al., 2006).

For our purposes, we �x α = 10−3, meaning that predators consume on
average 1000 prey to self-replace. This choice might re�ect, for example, ε = 0.1
and τ = 100 (re�ecting the average predator-prey interaction in the North Sea
food web; Jennings et al., 2002); or ε = .05 and τ = 50; et cetera.

Predation: ρ and z

Determining an appropriate predation rate ρ is crucial to our results, because
the behavior we report is uninteresting if it occurs only for unrealistically high
values of ρ. Direct estimation is precluded by the dearth of empirical studies
that have succeeded in simultaneously measuring the total number of individual
prey, the total number of individual predators, and the total rate of predation
events in a natural system. However, in the context of our model, we can
derive an empirical estimate for ρ by noting that the expected community size
of prey without predators is x̄0 = K, whereas the expected community size
with predators is x̄ρ = γK

αρ in the Holling Type I model. Thus, ρ = γ
α
x̄0

x̄p
.

Following local predator extinctions, prey populations have been observed to
increase by as much as 10-fold or 100-fold ( x̄0

x̄p
∈ [10, 100]; Terborgh et al., 2001).

Conservatively, we consider attack rates no higher than ρ = 10 γα = 500. There
is also a lower bound for ρ, namely the minimum value required for persistence
of the predator population in the mean �eld model ρ > γ

α = 50. We consider
no nonzero predation rates lower than this value.

Empirical estimates of the prey-switching parameter z exist for both Minke
Whales (Balenoptera acutorostrata) and the Hen Harrier (Circus cyaneus) (Smout
and Lindstrom, 2007; Smout et al., 2010). In both of these studies, z is allowed
to vary by prey species and is parameterized in the context of a Holling Type
II functional response for three prey species. The studies �nd species-speci�c
values ranging from 1 to 4, with values between 1 and 2 being typical across
species. In our investigation, we consider no values for z less than one, as these
would imply that the predator preferentially targets rare species. When z = 2,
our functional form for prey switching is a special case of a general form derived
from recent theoretical work on prey switching, suggesting that it is reasonable
to consider values as high as z = 2 (Morozov and Petrovskii, 2013). We therefore
consider the range z ∈ [1, 2].
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Additional parameters

Handling times: h and Tij Because these parameters serve as robustness
checks on our general results, we sought high-end estimates to demonstrate that
our qualitative results persist across a broad range of model assumptions. We
set the handling times at 10−3. Since a predator must consume on average
α−1 = 103 prey to self-replace, this means that a predator must spend on
average 1 time unit, or �ve percent its expected lifetime, handling prey just to
self-replace.

van Leeuwen predation: ρi and sij In van Leeuwen's functional form,
attack rates, prey similarity, and prey switching are intertwined. For i = j, we
set the similarity sij = 1, meaning that prey of the same species are entirely self-
similar. Otherwise, we set sij = 0.15, a low value that ensures that signi�cant
prey switching occurs in the functional response. For these choices, it was
necessary to examine higher values of ρi than the values of ρ considered in
other simulations in order to obtain a similar range of overall attack rates.

Invariant and independently �uctuating predator populations: P̄ and
λ In simulations with invariant predator populations, predator populations are
�xed at the equilibrium predator population in the corresponding Holling type
II di�erential equation P̄ = rK

ℵ (1− γ
αℵ ), where ℵ = ρ(1− hγ

α ).
In simulations with independently �uctuating predator populations, preda-

tors �uctuate according to a discrete Ornstein-Uhlenbeck process with propen-
sities p+ = λP̄ + γP and p− = (γ+λ)P . P̄ de�nes the mean, and λ determines
the strength of mean reversion. We construct this model primarily to motivate
mathematical understanding of the system, and we do not attempt to estimate
λ from data. Instead, we examine λ = 0 (invariant predators) and λ = 10,
a value chosen because it produces variance in predator populations similar to
what we observe from the Holling type II predators with ordinary population
dynamics.

Note that because we set a re�ecting wall at P = 1, the process is not truly
an Ornstein-Uhlenbeck process, and the true mean is slightly greater than P̄ .

Species-speci�c death rates δi and γ′ In some simulations, we give every
prey species, plus the predator, a unique species-speci�c death rate. We selected
the death rates δi by drawing from a log-normal distribution with E [log (δi)] =
−2 and variance Var [log (δi)] = 1/4. Of the M + 1 death rates drawn in this
manner, we assign the minimum value to the predator γ′ to ensure that it retains
a longer average lifetime than its prey. The generation times are drawn once and
then are �xed through time and across replicate communities. The randomly
drawn generation times used in our analyses are available in Table S2.
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Table S2: Species-speci�c death rates

Death rate (time−1)
Predator 0.0311

Prey 0.0575

0.0738

0.0763

0.0776

0.0785

0.0793

0.0878

0.0879

0.0903

0.0921

0.0928

0.1199

0.1209

0.1246

0.1286

0.1333

0.1349

0.1376

0.1407

0.1583

0.1588

0.1592

0.1630

0.1852

0.2338

0.2357

0.2366

0.2685

0.2778

0.2912
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2 Appendix II: Supplementary methods

Non-neutrality with species-speci�c death rates

Although every species has the same expected per-capita growth rate at all
points in time, the model with species-speci�c death rates is not neutral in the
sense that two species with the same abundance but di�erent values of δ will
have di�erent propensities for birth & death despite having the same average
change in population size per unit time. This implies that individuals belonging
to these di�erent species will have di�erent birth and death propensities, and
that longer-lived species will tend to have higher lifetime fecundity than shorter-
lived species in growing communities and lower lifetime fecundity in shrinking
communities. Furthermore, long-lived species will have lifetime fecundities that
integrate over longer timescales, and consequently their fecundities may better
approach the average fecundities of organisms in the mean-�eld limit.

One surprising consequence of this non-neutrality is that species with longer
generation times outperform species with shorter generation times. This hi-
erarchical competition vanishes in the mean-�eld limit, but persists in �nite
communities, presumably due to �uctuations about the equilibrium community
size that favor species with longer-generation times and less volatile popula-
tions. A full analysis of this hierarchical competition would distract from the
focus of this paper; for now we present evidence for the hierarchical competition
in Figure S11.

Behavior of density-dependent death simulations

Prey communities with density-dependent death exhibit two major di�erences in
their island-biogeographic dynamics compared to prey-communities with density-
dependent birth: they are more volatile, and the death propensity of a rare
species does not necessarily increase with predator attack rate ρ, owing to the
reduction in the propensity of death due to intra-guild competition. For the
sake of contrast, we illustrate these e�ects by comparing a single prey popula-
tion N regulated by density-dependence that occurs either entirely in the birth
process, to a population ND regulated by density-dependenc that occurs en-
tirely in the death process. In the context of equation 11 of our main paper,
these correspond to β = 1 and β = 0, respectively.

The increased volatility of communities with density-dependent death is as-
sociated to higher rates of extinction due to higher stationary variance in pop-
ulation size. Recall the propensities of a predator-free prey population with
density-dependence in birth and populations not much larger than K are

n+ = rN

(
1− N

K

)
+ δN (S1)

n− = δN
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and the propensities for a population with density dependence in death are

n̂+ = rND + δND (S2)

n̂− =
r

K
N2
D + δND.

Over a short time-interval, the variance in the change of a population size is

Var [∆N ] = n+ + n− (S3)

which, for a predator-free prey community near its carrying capacity K, is

Var [∆N ] = 2δK (S4)

Var [∆ND] = 2 (r + δ)K.

It is clear that the populations with density-dependence in birth are less volatile;
Var [∆N ] < Var [∆ND]. This short-term volatility in ∆N is not equivalent
to the stationary variance in population size (and the associated extinction
rates), but since these processes have the same drift near their mean, the near-
equilibrium volatility of ∆N gives us the relative variance of isolated populations
with density-dependence entirely in birth or entirely in death. Con�rmation of
the stationary variance requires an appropriate linear-noise approximation from
either a martingale problem formalized by Stroock and Varadhan (1979), a
Kramer-Moyal expansion, or a van Kampen system-size expansion. Because
of its rigor and direct relation to our problem - the dependence of predator-
mediated coexistence on system size - we choose to illustrate van Kampen's
method below.

The master equation specifying the time-evolution of the probability mass
function f(N, t) is

ḟ =
[(
E1 − 1

)
n− +

(
E−1 − 1

)
n+
]
f(N, t) (S5)

where Emf = f(N +m, t) is the step-operator de�ned by van Kampen (1981).
Decompose N into two variables at di�erent scales, K and K1/2:

N = Kx+K
1/2ξ (S6)

f(N, t) = Π(ξ, t)

and substitute these into equation S5 to obtain

∂Π

∂t
−K1/2 ∂Π

∂ξ

∂x

∂t
=

(
−K−1/2 ∂

∂ξ
+

1

2
K−1 ∂

2

∂ξ2
+ ...

)
(S7)

· (r + δ)
(
Kx+K

1/2ξ
)

Π

+

(
K−

1/2 ∂

∂ξ
+

1

2
K−1 ∂

2

∂ξ2
+ ...

)
·
(
Kx+K

1/2ξ
)(

δ + rx+K
−1/2rξ

)
Π.

65



Collecting terms of order O(K1/2), we get

∂x

∂t
= rx(1− x) (S8)

which de�nes the mean-�eld dynamics of the prey population relative to K.
Note the stationary solution to the normalized mean-�eld system is xs = 1.

Next, collect terms of order O(1), we get

∂Π

∂t
= −(r + δ)

∂

∂ξ
ξΠ +

1

2
x (r + δ)

∂2Π

∂ξ2
(S9)

+ (δ + 2rx)
∂

∂ξ
ξΠ +

1

2
x (δ + rx)

∂2Π

∂ξ2

= −r(1− 2x)
∂

∂ξ
ξΠ +

1

2
x(2δ + r + rx)

∂2Π

∂ξ2
.

We note that the stationary solution to this Fokker-Plank equation will be
a Gaussian. We substitute in the stationary value of x = xs

∂Π

∂t
= r

∂

∂ξ
ξΠ +

1

2
(2δ + 2r)

∂2Π

∂ξ2
(S10)

and see that the stationary solution for �uctuations in density-dependent death
ξsD will be a Gaussian with mean 0 and variance

Var[ξsD] = 1 +
δ

r
. (S11)

In the model with density-dependent birth, we can follow the same steps
and obtain the Fokker-Plank equation

∂Π

∂t
= −r (1− 2x)

∂

∂ξ
ξΠ +

1

2
x (2δ + r − rx)

∂2Π

∂ξ2
(S12)

resulting in stationary variance

Var[ξs] =
δ

r
. (S13)

Thus, a Gaussian approximation for the stationary distributions of N and
ND yield

Var [N ] ≈ δ

r
K (S14)

Var [ND] ≈
(

1 +
δ

r

)
K.

Our instantaneous volatilities at N = ND = K calculated above give us the
same relative values of the stationary variances of N and ND due to their
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having the same drift. Regardless, the result is clear: communities with density-
dependent death have higher variance in community size than communities with
density-dependent birth. For our choice of parameters, δ = 0.1 and r = 5, the
stationary variance of communities with density-dependent death is 51 times
that of communities with density-dependent birth. Consequently, the timescale
of neutral drift to extinction will be much faster for N than ND, and migration
rates must be increased to obtain the same average species richness and realistic-
looking species-abundance distributions in absence of predators. To that end,
all our simulations of density-dependent death had migration rates that were
51 times that of the normal, density-dependent birth migration rate, i.e. mD =
51m = 15.3.

Communities with density-dependent death have an additional feature that
causes qualitative di�erence in their extinction-colonization dynamics. In our
�Analytic Results� section, we assume that the death propensity for a singleton
invader, n−1 , should always increase with ρ. This is a reasonable assumption
for density dependent birth. Revisiting the singleton death propensities for
density-dependent birth,

n−1 = δ + ρ

∑
iNi
K

P

1 +
∑
iN

z
i

(S15)

we can make a conservative estimate that n−1 will increase under prey-switching
predation where ∂P

∂ρ > 0 since
∑
iN

z
i will shrink faster than

∑
iNi as ρ is

increased for z > 1. In equation 2 of the main paper we see that P̄ is not
monotonic with ρ, but if �uctuations in n−1 are small we can approximate n−1
by substituting in P̄ to get

n−1 ≈ δ +
∑
i

Ni
r
(

1− γ
αρ

)
1 +

∑
iN

z
i

(S16)

which increases with ρ for z > 1, since
∑
iN

z
i will shrink faster than

∑
iNi as

ρ increases. From this, we postulate that singleton death rate always increases
with increasing predation intensity for communities with density-dependence
entirely in birth.

However, for density-dependent death, this is not the case. The singleton
death propensity is

n−1 = δ +

∑
iNi
K

(
r +

ρP

1 +
∑
iN

z
i

)
(S17)

which can decrease with ρ if deaths due to intraguild competition r
K

∑
iNi

decrease faster than the increase in the death due to predation on singletons.
This leads to higher values of ρ necessary to obtain the same singleton death
propensity, and may yield a slower rate of increase in the extinction rate with
respect to ρ, and consequently a higher ρ∗ as observed in Figure 2. The death
rate of singletons in communities with density-dependence entirely in death
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may decrease with increasing prey-switching predation intensity if intraguild
competition is a major cause of mortality.

When we simulated communities with density dependent death, we found
that predators increased prey diversity over a wide region of attack rates ρ, and
the breadth of this region increased rapidly with K. To present an adequate
picture of the changes in species richness with ρ and K, we found it necessary
to examine a wider range of values for ρ than in other simulations.

Calculation of ρ∗ for di�erent metacommunity richnesses (Figure 3)

To calculate ρ∗ for di�erent metacommunity richness M , 4 replicate commu-
nities were simulated from the standard, Holling I functional form of preda-
tion for K = 1, 000 and each value of ρ = [0, 50, 100, 150, 200, 250, 300],
M = [10, 20, 40, 80, 160, 320] and z = [1.1, 1.5]. Simulations ran for T = 3, 000
time units (300 prey generations) and species richnesses, Sρ, over the last 2, 000
time units were averaged for more robust estimates. For each value of M , the
predator-free richness, S0, was obtained and then MATLAB's interp1 function
used to interpolate the species-richness curves, Sρ, and obtain the value of ρ

∗ > 0
such that Sρ∗ = S0.

Transient dynamics (Figure 4)

We wish to understand the transient dynamics of species richness following
predator introductions to neutral communities. To initialize the neutral com-
munities near the stationary distribution of the predator-free community for a
given value of K, we initialize four replicate communities near the mean-�eld
equilibrium and simulate the dynamics for T=20000 timesteps. We then aver-
age the species-abundance distributions from these four replicates, and we use
this averaged distribution to initialize twenty new communities, each of whose
dynamics we simulate for T=1000 timesteps. We then simulate predator intro-
ductions into each of these twenty replicate communities, and we monitor the
time-evolution of each replicate. We monitor the dynamics by examining the
community state every 0.25 timesteps for 50 timesteps (5 prey generations). Fi-
nally, for each time point, we average the species-abundance distributions across
replicates to provide a general picture of the transient dynamics.

Extinction & Species Richness Analysis

Prey communities were simulated for T = 40, 000 timesteps and sampled every
time unit for the last 39, 000 time units. The following parameters varied facto-
rially: K ∈ {500, 1000, 2000}, ρ ∈ { 7nγ

9α }
n=9
n=0, and z ∈ {1, 1.05, 1.1, 2}. Average

species richness, E[n−1 ], E[Ψ1], and Cov[n−1 ,Ψ1] were obtained by taking the
time-average of the respective quantity for each combination of ρ, K and z,
where

n−1 = δ + ρ

∑
j Nj

K

P

1 +
∑
j N

z
j

(S18)
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was the propensity of death for a singleton in the community calculated at each
time point.

3 Appendix III: Stationarity checks

We are interested in the asymptotic or stationary species-richness of commu-
nities at island-biogeographic equilibrium. To simulate this quantity, we must
determine the relaxation time required to ensure that the imprint of initial con-
ditions fades and dynamic equilibrium is reached.

We �rst sought a conservative estimate of the relaxation time in the Holling
type I model as follows. We surmised that the community would take longest to
reach equilibrium at high carrying capacities and low predation rates. Since we
explore parameter values where 0 ≤ ρ ≤ 500 and 100 ≤ K ≤ 2000, we used ten
simulations with ρ = 0 and K = 2000, initialized near the determinisitic equi-
librium, to obtain estimates of the relaxation time for the species-abundance
distribution. We estimate this time to be T=20000 (approximately 2,000 prey
generations, Figure S4). In performing this stationarity check, we noted that
species richness equilibrates much faster than the entire species-abundance dis-
tribution, approximating the long-term expectation by T=2000 (Figure S5).
The qualitative response of species richness to changes in model parameters is
apparent even earlier, by T=500. These observations allow us to perform many
more simulations than would be possible otherwise. We establish our princi-
pal results in Figure 1 by simulating communities to T=20000 timesteps, and
we examine species-abundance distributions only for communities simulated to
T=20000 . Most other results are based on simulations to T=2000 timesteps.
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Figure S1: Stationarity check for Figure 1. Note: all simulations began as communities �lled

with all M species. The simulations with the longest relaxation time are the bottom right pixels of

these �gures where ρ = 0 and K = 2, 000.
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Figure S2: Stationarity check for Figure 2
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Figure S3: Stationarity check for Figure 3. For simulations varying M , we were unsure whether

high or low values of M would have the longest relaxation times. We assumed that the relaxation

time would vary monotonically with M , if at all, and so chose values of M outside the range

considered in the corresponding �gure of the paper (M ∈ [10, 20, 40]). Here we have M ∈ [5, 45]

and z ∈ [1.1, 2].
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Figure S4: Stationarity of SAD over 10 replicates for K ∈ [1000, 2000] and ρ ∈ [0, 100], z = 1.5.

Prey-switching predation increases the evenness of the community by decreasing the individual

�tness of species with high relative abundances. The �nal SAD is determined by a balance of neutral

drift yielding log-series-like distributions in the top panel and deterministic forcing for evenness.
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Figure S5: Relaxation of species richness over 10 replicates for K ∈ [1000, 2000] and ρ ∈ [0, 100],

z = 1.5. Error bars show ±2σ. The predator-free system has the longest relaxation time and thus

sets the lower bound on time needed for stationarity in species richness; for all simulations of species

richness in this paper, K ≤ 2, 000 and T = 2, 000.
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4 Appendix IV: Additional supplementary �gures

Figure S6: Prey-switching predators disproportionately consume the more abundant prey. (A)

We de�ne the per-capita rate of predation of species i as ρ
∑

j Nj
K

(Ni)
z∑

j(Nj)z
, giving a diet ratio

fi/fj =
(

Ni
Nj

)z
. (B) Van Leeuwen et al. (2013), derived a per-capita rate of predation based on

individual-level assumptions of attack rates, handling times, and the probability of switching from

one prey species to another (see Robustness Checks)
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Figure S7: Demographic stochasticity causes sustained oscillations in prey community size which

increase the variance of prey populations over time. (A) Variance in community size vs. expected

community size across replicate communities used to generate species richness plots in Figure 2.

Black dots represent communities where ρ = 0; red dots are communities with ordinary Holling I

predators, and blue dots are communities with independently �uctuating predators. All predator-

containing communities plotted here fall within ρ ∈ [250, 350]. The variance increases approximately

linearly with the mean: Var[Ct] = const+E[Ct]. (B) A stacked time-series plot of prey abundances

for a species-speci�c death rates simulation. The prey and predator have generation times that

are non-integer multiples of one another, but oscillations nevertheless dominate the community

dynamics. (C) The auto-covariance indicates the existence of quasicycles. (D) An averaged power

spectrum of prey community size over 42 replicate simulations forK = 1000, T = 2000, and ρ = 250.
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Figure S8: Extinction rates as a function of ρ, K and z. Breaking down the average rate of

extinctions into E[n−
1 ], E[Ψ1], and Cov[n−

1 ,Ψ1] reveals that much of the gains in species richness

for low values of ρ are attributable to decreases in E[Ψ1], which we believe is related to decreases

in the variance of relative abundance that shrink the �uctuations of prey community composition

away from the boundaries where singletons occur. A major cause of increased extinction rates (and

decreased species richness) for high values of ρ is the increased covariance Cov[n−
1 ,Ψ1], an e�ect

that is pronounced for higher values of z and lower values of K.

77



Figure S9: Van Leeuwen prey-switching predation does not separate the overall predation rate and
the degree of prey-switching due to the costs of switching between prey. Consequently, increasing

s, the similarity between prey (decreasing prey switching), leads to increasing rates of predation

seen as the bulk of the densities moving closer to the origin from the left-hand column to the

right-hand column. Increasing predation intensity has a similar e�ect of increasing the variance in

community size while also increasing the covariance between prey populations and decreasing the

mean abundance of prey.
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Figure S10: Cross-sections along lines of constant ρ in Figures 1-3 capture species-area rela-

tionships; prey-switching predation increases the slope of SARs as plotted here for the average of

4 replicates sampled at 4 time points, T ∈ [5000, 10, 000, 15, 000, 20, 000] and z = 1.5. K∗ is the

value of K where SARs cross, which requires that the species richness increase faster with K at

ρ = ρ∗ than at ρ = 0.
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Figure S11: Species-speci�c generation times yield non-neutral prey communities. (a) Stacked

plots of 2-species predator-free communities run for T=2000 shows that the species with longer

generation times have higher mean abundances. When δ1 = δ2, the communities are neutral (bottom

panel of trajectory plots) but as |δ1 − δ2| increases the competitive superiority of the longer-lived

species becomes apparent in a decreased mean abundance of the shorter-lived species (b).
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Figure S12: θ is a good predictor of π1 (top panel), but both are poor predictors of Ψ1 (bottom

plots). Lines follow paths of increasing ρ for ρ ∈ [0, 350], with diamonds indicating the end where

ρ = 0.

5 Appendix V: Supplementary analysis

Changes of singleton death propensity n−1 with K

A decrease in n−1 with K comes from the decrease in the apostatic death func-
tion. Recall

n−1 = δ + ρ

∑
j Nj

K

P

1 +
∑
j N

z
j

. (S19)
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A formal proof that E[n−1 ] decreases with parameters will require integrating
over the currently unknown distribution of community composition, but infor-
mal intuition about changes in n−1 can be obtained by looking at its functional
form near the expected community composition. Substituting in the mean-
values of Nj and P for the predator with a bilinear functional form of predation,
we get ñ−1 , an approximation for n−1

ñ−1 = δ + r
γ

αρ

(
1− γ

αρ

)
K

1 +M
(
Kγ
αρM

)z (S20)

≈ δ + h(ρ)Mz−1K1−z

where h(ρ) = r
(
γ
αρ

)1−z (
1− γ

αρ

)
. Under this approximation, we would expect

that n−1 decreases with K, decreases with z, increases with M , and increases
with ρ so long as z > 1. All of these changes resonate with intuition: singleton
invaders should be less likely to be eaten by a prey-switching predator if they
enter into large communities with fewer species (thereby decreasing the abun-
dance of the invader relative to other species) and a predator with low-attack
rate that highly favors the more abundant species.

This calculation points to a useful quantity in the analysis of this system:
αρ
γ , which is the expected number of o�spring, P0, produced by a single preda-
tor invading a community saturated with K prey. This quantity is also the
fold-decrease in prey populations observed following predator introduction, an
empirically tractable quantity that we used to estimate the parameter ρ. We
de�ne P0 = αρ

γ and rewrite equation S20

ñ−1 ≈ δ + rK1−z (MP0)
z−1 (

1− P−1
0

)
. (S21)

We see that for z > 1, ñ−1 is monotonically increasing with P0, and not just ρ.

Investigating the number of singletons Ψ1

One may be able to compute Ψ1 through an iterative scheme but often such
schemes provide little intuition about Ψ1 and therefore leave us without rules-
of-thumb about how/why a prey-switching predator reduces the number of sin-
gletons and how that scales with ρ and z (e.g. Nisbet and Gurney, 1982). We
attempted to �nd such rules of thumb by considering the probability that a
species is a singleton given that it is present in the community. We denote this
probability π1. If migrations are zero and if the propensity of singleton deaths
were constant, π1 is the quasistationary probability that an extant species is a
singleton. This quantity would be inversely related to the mean time to extinc-
tion, τE (Nisbet and Gurney, 1982):

τE =
1

n−1 π1

. (S22)

In seeking an approximation for π1, we hypothesized that migration has a
negligible e�ect in our model, that n−1 approximately constant, and that we
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could search for a reasonable approximation to π1 based on some function of
descriptive statistics of the distribution of prey population size such as the
mean, µN and variance, σ2

N , conditioned on the prey species being present
in the community. In particular, decreases in the mean and increases in the
variance might be be tied to increases in π1. We developed these hypotheses
from the change in the probability density at x = 1 with changes in mean and
variance of a unimodal distribution with mean greater than 1, small relative
variance, and negligible skewness.

We explored various combinations of the mean and variances (e.g. the co-
e�cient of variation θ = σN

µN
) in search of a useful and empirically measurable

quantity that predicts π1, and consequently extinction rates, thus yielding rules
of thumb for the statistical signatures of prey communities that would bene�t
from prey-switching predation. Such a relationship between θ and extinction
rates would open the door to incorporating known scaling laws between the
mean & variance (van Kampen, 1981; Taylor and Woiwod, 1980; Kilpatrick and
Ives, 2003) and might provide fruitful discussion about the potential scaling of
a prey-switching predator's e�ect on prey diversity in natural systems.

However, although the coe�cient of variation was a good approximation for
π1 and both changed non-monotonically with ρ in much the same way as the
species richness, they provided a poor approximation of Ψ1 due to the con-
founding and logically circular e�ect of the number of species in the community
at stationarity. Conditioned on there being fewer species, µN and σ2

N should
rise, and in fact we see for high ρ an increase in the coe�cient of variation of
species conditioned on their being present in the community (see Figure S12). It
remains an open challenge to �nd heuristics and rules of thumb based on mea-
surable properties of prey populations that can predict the e�ect of a predator
on prey diversity given its attack rate and degree of prey switching.

Investigating Cov[n−1 ,Ψ1]

Decreasing the variance in relative abundance of prey populations will change
the distribution of the number of singletons at any given point of time. For
example, consider a 2-species community. When the variance in relative abun-
dance is non-zero and variance in community size zero, the multivariate prey
density falls on the line Ni+Nj = C and there can be only one singleton at any
point in time. When a singleton is present in the community, Ψ1 = 0 or Ψ1 = 1
and thus n−1 takes on its second-lowest value

n−1 = δ + ρ
C

K

P

1 + (C − 1)z
. (S23)

Therefore, when a singleton is present, Cov[n−1 ,Ψ1] < 0 when σ2
R is large and

σ2
C small. When the variance in relative abundance is zero, then N1 = N2 and

the distribution of the number of singletons will fall entirely on either Ψ1 = 0
or Ψ1 = 2, causing n−1 to take its highest value

n−1 = δ + ρ
P

K
(S24)
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when both species are singletons.
This analysis is complicated in multi-species communities with intermediate

degrees of variance along and orthogonal to the simplex, but we suspect that
intuition from the 2-species case extends to multispecies communities. For a
given community size, C, n−1 is maximized when the community is perfectly
even (Ni = Nj = N for all i, j), and for communities that are perfectly even
n−1 increases as the community gets small. We hypothesize that in general
n−1 increases monotonically along some direction of increasing evenness and de-
creasing C. We hypothesize Cov[n−1 ,Ψ1] increases faster with ρ for higher z
because the predator decreases the variance in relative abundance thereby in-
creasing the variance of Ψ1, and this decrease in variance is greater for a more
e�ective prey-switcher (higher z). When there are above-average numbers of
singletons in a community with highly covarying populations, we expect the
total community size to be low, and the expected evenness generated by a prey-
switching predator will yield higher-than-average n−1 . Increases inK will be tied
to decreases in the variance of both n−1 (due to the apostatic death function be-
having like something between K−1 and K1−z for z > 1; see equation S19) and
Ψ1 (by moving the entire multivariate density away from the boundaries where
singletons occur), and thus increases in K should be associated with decreases
in Cov[n−1 ,Ψ1].

Existence of ρ∗ and K∗

We are now equipped to see how K modulates the e�ect of predation on species
richness in our model. The existence of ρ∗ is ensured by su�ciently large in-
creases of E[n−1 ], E[Ψ1], and Cov[n−1 ,Ψ1] with ρ beyond the point of maximal
species richness. However, the existence of ρ∗ does not automatically imply
the existence of a critical carrying capacity K∗, above which a prey-switching
predator improves species richness and below which suppresses species richness
relative to a predator free community. In order for K∗ to exist, species richness
must increase more rapidly with K in the vicinity of ρ = ρ∗ than at ρ = 0.

To see why this occurs, we �rst note that for z > 1, n−1 decreases with
K for ρ > 0 but not for ρ = 0 since the singleton death rate in absence of
predation is simply δ. As long as Ψ1 and/or the covariance Cov

[
n−1 ,Ψ1

]
do

not increase with K, this result ensures that some predation regimes will have
opposite e�ects on richness depending on the value of K. In fact, in our models
Ψ1 and Cov

[
n−1 ,Ψ1

]
enhance the e�ect further.

In our models, variation in n−1 is shallow over K ∈ [500, 2000] and cannot
account for the full e�ect (Figure S8). Instead, much of the e�ect can be at-
tributed to the decreasing of the number of singletons Ψ1 and the decreasing
covariance Cov

[
n−1 ,Ψ1

]
with increasing K (Figure 5a). In the predator-free

communities (ρ = 0), Cov[n−1 ,Ψ1] = 0 since n−1 is independent of the com-
munity state, and Ψ1 varies little across the full range of carrying capacities
considered. However, in the presence of prey-switching predators (ρ > 0 and
z > 1), smaller communities have higher covariance Cov

[
n−1 ,Ψ1

]
. This proba-

bly results from an increase in the between-prey covariance σi,j , which causes
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singletons to occur when community sizes are below average and, consequently,
n−1 above average.

Variance in relative abundance as a measurable, heuristic tool for
assessing impacts of stabilizing forces on species richness

Rates of prey-switching predation on a focal species increase as a function of
that species' relative abundance, and thus �uctuations in relative abundance
may be more informative than �uctuations in numerical abundance for under-
standing the impacts of a prey-switching predator (or other frequency-dependent
stabilizing mechanism) on the statistics of the population sizes of its prey and
community species richness. Fluctuations in community size with �xed relative
abundance are visualized as spread of the multivariate prey distribution along
the major axis of the ellipses pictured in Figure S9 (see also Figure 5b). Fluctu-
ations in relative abundance in a �xed community size, on the other hand, are
�uctuations on a simplex (the minor axis of the ellipses).

A Taylor expansion for the moments of the relative abundance yields an ap-
proximation for the variance in relative abundance. This allows us to appreciate
the relationship between the relative abundance and statistics of the distribu-
tion of prey population size. For a function f(X,Y ) of random variables X
and Y with well de�ned means and variance, its variance can be approximated
by performing a Taylor expansion about µX and µY , the means of X and Y ,
respectively

Var [f(X,Y )] ≈ Var

[
f(µX , µY ) + (X − µX)

∂f

∂X
+ (Y − µY )

∂f

∂Y

]
(S25)

≈
(
∂f

∂X

)2

σ2
X +

(
∂f

∂Y

)2

σ2
Y + 2

(
∂f

∂X

)(
∂f

∂Y

)
Cov [X,Y ]

where the derivatives are evaluated at (X,Y ) = (µX , µY ). Performing this
expansion for the relative abundance R of some population N in a community
of size C (R = N/C), we obtain

Var [R(N,C)] ≈ σ2
N

µ2
C

+
µ2
N

µ4
C

σ2
C − 2

µN
µ3
C

Cov [N,C] (S26)

where µN is the expected population size, µC the expected community size, σ2
N

the variance of a prey species' population size, σ2
C the variance in community

size, and Cov [N,C] the covariance between a focal prey population and the
community size. Assuming all M prey species are neutral, we have that µC =
MµN , Cov [N,C] = σ2

N +(M − 1)σi,j , where σi,j is the covariance between two
populations. Substituting these into equation 25, we get an expression for the
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variance in relative abundance, σ2
R

σ2
R ≈

σ2
N

M2µ2
N

+
1

M4µ2
N

[
Mσ2

N +M (M − 1)σi,j
]

− 2

M3µ2
N

(
σ2
N + (M − 1)σi,j

)
.

(S27)

This simpli�es to

σ2
R ≈

M − 1

M3

[(
σN
µN

)2

− σi,j
µ2
N

]
(S28)

or
σ2
R ∝ θ2 − ζ2 (S29)

where θ = σN

µN
is the coe�cient of variation and ζ =

√
σi,j

µN
the coe�cient of

covariation. From this approximation, we see that changes in the variance in
relative abundance, the coe�cient of variation, and the covariance are intimately
tied. In the case where prey-switching is independent of overall predation rates
(as in our models), prey-switching predators increase the covariance between
prey populations and decrease the variance within prey populations. The overall
e�ect is to decrease the variance in relative abundance.

It turns out that this decomposition of population �uctuations in terms of
�uctuations in community size and �uctuations on simplices of constant com-
munity size may lead scale-free statistics of population �uctuations that are
useful for understanding how stabilizing forces impact extinction risk. Both the
coe�cient of variation and the coe�cient of covariation scale with K; we can
approximate them as θ ≈ θ̄K−

1
2 and ζ ≈ ζ̄K−

1
2 where θ̄ and ζ̄ do not depend

on K. We de�ning a re-scaled compositional variance σ̄2
R = σ2

RK
−1, and we

have

σ̄2
R ∝

1

K2

[
θ̄2 − ζ̄2

]
(S30)

which combines information from the means, variances and covariances in prey
populations to yield a useful metric of �uctuations in relative abundance - pre-
cisely the �uctuations that are dampened by many stabilizing mechanisms (in-
cluding our prey-switching predators). We observe from our models that for a
given value of z, σ̄2

R is a good metric of extinction rates across a range of K and
ρ (Figure S13). Note, however, that additional information about z is necessary
to predict species richness from empirical measurements of σ̄2

R, because systems
without prey-switching predators (the diamonds in Figure S13) or with di�erent
values of z fall on a di�erent lines from one another.

We do not know the exact reason for the close relationship between σ̄2
R and

species richness, but it may be related to the relationship between σ2
R and the

expected angular displacement of the community from its mean (Figure S14).
De�ning

φ = 2 cos−1

( ∑
iNi√∑
iN

2
i

)
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we can re-write φ as a function of relative abundances, Ri = Ni∑
j Nj

and perform

a Taylor expansion of φ about the mean relative abundances E[R] and note that
all species are neutral to approximate

E[φ] ≈ Mσ2
R

 ∂2

∂R2
i

cos−1

(∑
i

R2
i

)− 1
2


E[R]

+2M(M − 1)Cov[Ri, Rj ]

 ∂2

∂Ri∂Rj
cos−1

(∑
i

R2
i

)− 1
2


E[R]

and thus
E[φ] ∝ σ2

R + aCov[Ri, Rj ]

where a is some constant. In the special case of a 2-species community (or
any grouping of a community into two groups that are equivalent both in the
eyes of the researcher and of the predator) we have relative abundances R1

and R2 = 1 − R1, and Cov[Ri, Rj ] = −σ2
R thus our approximations imply a

direct proportionality between the expected angular deviation and the variance
in relative abundance E[φ] ∝ σ2

R (Figure S14). Intuition for the utility of the
variance in relative abundance towards making scale-free statistic for estimating
extinction rates and equilibrium species richness comes from its proportional
relationship between the angular deviation of a community from its mean, as
these radial coordinates are closer to a scale-free indicator of the proximity of
a community to the edges where extinctions occur. More thorough analysis is
warranted, as are tests of whether or not the statistics σ2

R, σ̄
2
R and φ are useful

in asymmetric communities (perhaps with re-scaled axes to ensure the central
tendency of the rescaled community is centered in the positive orthant).
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Figure S13: Species richness vs. σ̄2
R (equation S30) plotted for K ∈ {500, 1000, 2000}, along

lines of increasing ρ ∈ [0, 350]. σ̄2
R may be a useful proxy for extinction risk given a particular

mechanism of stabilization. More information is required to predict species richness for di�erent

stabilizing mechanisms, as systems without prey-switching predators (solid diamonds) or systems

with di�erent degrees of prey-switching stabilization (the two subplots) appear to fall on signi�cantly

di�erent curves.

88



Figure S14: The expected angular displacement of a community from its mean, φ, is linearly

related to the variance in relative abundance. Since the variance in relative abundance, σ2
R, is

dampened by frequency-dependent stabilizing mechanisms, φ and σ2
R may lead to useful scale-free

statistics for assessing extinction risk in �nite communities with frequency-dependent stabilization

such as the prey-switching predators we've considered.

6 Appendix VI: Guide to MATLAB simulation

code

We provide all of our MATLAB code for simulation in the online supplement.
The logic of the simulations is described in detail both in the main paper and
in annotations embedded within the attached MATLAB �les. Some minor dif-
ferences exist between the variable and parameter names used in our paper and
those used in the code. Where they involve parameters, these di�erences are
noted in Table S1. Where they involve variables, these di�erences are noted in
the annotated code.

The MATLAB �le PredSim.m, available with the online supplementary ma-
terials, de�nes a function PredSim that takes as inputs the control parameters
in our models, as well as a text string that speci�es the functional form of pre-
dation to be used. PredSim provides as outputs snapshots of the predator/prey
community after simulations have run for a user-speci�ed number of timesteps.
The �le PredSim_Demo.m contains the parameter values used in our simula-
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tions, and a few short analyses that call PredSim and provide outputs.
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Introduction

Economies, ecosystems, and other complex-adaptive systems [11, 17, 1] change
with time as the relative abundances of various companies, species, or strategies
go up and down by a mix of forces we can predict and whose e�ects we un-
derstand and forces we can't predict and/or whose e�ects we don't understand.
Reliable forecasts of these systems has implications for asset pricing, investment,
and the management of socio-ecological systems.

A large subset of complex-adaptive systems are constrained by �nite, limit-
ing resources that may create an approximately zero-sum game for the agents
(species, companies etc.) in competition over those resources. Examples are
the cover of canopy trees on an island [12], the land owned by various groups
(e.g. Sunni, Shiite, Kurds & others in Iraq) or the market share of companies in
constant markets. For these zero-sum communities, the Wright-Fisher Process
(WFP) serves as a mechanistically-based null model for time-series data against
which one can look for competitively superior trees, groups or companies, or
more complicated features of the data such as covariances between groups, clus-
tering of di�erent groups, percent variance covered by the �rst principal com-
ponent, etc. Rejection of the WFP can motivate further construction of more
detailed models for the stochastic evolution of complex-adaptive systems.

The Wright-Fisher Process is an Ito stochastic di�erential equation (SDE)
originally proposed as a model for the neutral drift of alleles in a population
[10, 24]. It was later adapted by Kimura [16] as a null model for the distribution
of the frequency of molecular polymorphisms in a population, and extended by
Hubbell [12] for species-abundance distributions and species-area relationships.
It has been shown that models of volatility-stabilized markets [9] have market
weights that follow the WFP [20]. The Wright-Fisher Process has also been
proposed as an approximation to the Langevin SDE for the random opening
and closing of ion channels in neurons [6]. Tests of neutrality have become cor-
nerstone in population genetics [22, 7] and making neutrality tests available for
time-series datasets may accelerate our understanding of non-neutral patterns
in ecological, economic, sociological and other systems for which the WFP is a
suitable null model.

The broad use of the Wright-Fisher process stems from its parsimonious
assumptions about the underlying mechanisms of random birth, death, and dis-
persal. At each timestep, an organism is drawn at random to die. Immediately
after death, another organism is drawn at random to replace the organism that
died. With probability 1 −m, an organism is randomly drawn from the local
community to reproduce otherwise, with probability m, an organism is ran-
domly drawn from an in�nitely large metacommunity to migrate in, thereby
maintaining a constant community size. This serves as a useful null model of
neutral competition as all species have the same per-capita �tness - there are no
niche di�erences, frequency-dependent stabilizing mechanisms, or other trophic
structure stabilizing competition. For time-series datasets of communities of
constant size, one might want to make a solid epistemological statement that
a feature observed in their model is not explained by neutral birth, death and
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dispersal. Features of interest could include the covariance between two species,
the percent of variance explained by the 3rd principal component, or some fea-
ture of the Fourier spectrum and other complex features for which the null
distributions of test statistics under neutral competition are not known or for
which statistical null hypotheses detached from ecological mechanisms are less
relevant and less conducive to the construction of alternative models.

The combined broad applicability of the Wright-Fisher process and recent
emergence of long-term ecological research (LTER) datasets and other longitu-
dinal studies of fast-changing communities such as microbial communities on
the surface of the skin or tongue [2] motivates making the WFP of neutral
competition accessible for hypothesis testing in time-series datasets. Some re-
cent work has tested some analytically tractable features of populations within a
neutral community [3, 15], but neutrality is not a population-level phenomenon:
species are neutral with respect to one another, and so community-based fea-
tures such as covariances and other more global structures of the data may
illuminate general stabilizing mechanisms or non-neutral trophic structure in
communities. The null distributions of such features of interest may beyond
the scope of current analytical tools; there is a need for the ability to simulate
surrogate datasets of neutral drift against which features of time-series data
can be compared. However, simulation of the WFP is fraught with pitfalls in
numerical stability and computational speed; a fast, numerically stable method
for accurate simulation of the WFP would greatly enable hypothetico-deductive
progress in our understanding of the mechanisms underlying the dynamics of
complex-adaptive systems.

In this chapter, I present a series of tools aimed at making the WFP acces-
sible as a null model for time-series datasets. The �rst tool presented is a set
of volatility-stabilizing transformations which can be combined with constant-
volatility tests to test the quadratic covariation of the WFP; these multiple
volatility-stabilizing transformations can be combined in a multiple-hypothesis-
testing framework for a global test of whether an entire community is drifting
according to a WFP. Second, I develop a numerically stable and computation-
ally e�cient scheme for simulating the WFP founded on two key calculations:
I �nd a numerically stable decomposition of the covariation matrix which en-
sures a conservation of relative abundance and real-valued output, and I use
the invertible log-odds-ratio transform to simulate a WFP on an unbounded
state space which helps ensure trajectories don't hop out of bounds. Third,
I provide calculations for parameter estimation so one can generate surrogate
WFP datasets corresponding to their data. Finally, to illustrate the utility of
the tools developed here, I analyze datasets from the human microbiome [2]
and the S&P 500 and illustrate some ways forward towards the construction
of alternative models that explain non-neutral phenomena in the data. I'm
happy to make my MATLAB code available to accelerate progress on inferring
non-neutral features in the dynamics of complex-adaptive systems.
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The Model

The Wright-Fisher Process is derived as a continuous-state approximation of an
urn process where balls are drawn out at random for death and then instanta-
neously replaced with either a birth from a randomly drawn member of the urn
or a migration from a randomly drawn member of an external, in�nitely large
metacommunity [10, 24]. For a community of size J , this translates into the
following transition probabilities for a population of size N i

t at time t

P{N i
t → N i

t + 1} =

(
J −N i

t

J

)(
mp+ (1−m)

N i
t

J − 1

)
P{N i

t → N i
t − 1} =

(
N i
t

J

)(
m(1− p) + (1−m)

J −N i
t

J − 1

)
P{N i

t → N i
t} =

(
J −N i

t

J

)(
m(1− p) + (1−m)

J − 1−N i
t

J − 1

)
+

(
N i
t

J

)(
mp+ (1−m)

N i
t − 1

J − 1

)
where P{N i

t → N i
t+1} is the probability that the population size of species i

increases by 1 individual at time step t, m is the probability of migration and pi
the metacommunity relative abundance of the species. The de�ning assumptions
of this one-step process are the random birth/death/migration and the constant
community size creating zero-sum neutral drift.

The discrete process can be simulated directly. However, many systems are
extremely large - there are 1014 bacteria in the gut, and 1012 − 1014 dollars in
some markets - and the simulation of WFP surrogate datasets for these sys-
tems requires either computationally intensive direct simulation of the discrete
process or more computationally e�cient simulation of a similar, continuous pro-
cess. This continuous process is obtained by considering relative abundances,

Xi
t =

Nit
C . In the limit of in�nitely large system size [23] or by setting up a mar-

tingale problem and keeping constant the product of the probability of migration
and the community size [21] one arrives at the Wright-Fisher SDE describing
the trajectories of the relative abundances of all n species in the community:

dXt = λ (p−Xt) dt+ σ (Xt) dWt (1)

where Xt ∈ ∆n ∀t is the vector of relative abundances at time t lying in the
n − 1 dimensional simplex, ∆n, in the positive orthant of Rn, p ∈ ∆n is the
relative abundance of the n species in the metacommunity, λ = mJ is the rate
of migration from the metacommunity into the local community, and 1

2σσ
T = Σ

is the covariation matrix where

Σij =

{
Xi
t

(
1−Xi

t

)
i = j

−Xi
tX

j
t i 6= j.

(2)

One can verify that the process stays in the simplex by con�rming that dXT
t 1 =

0.
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Variance-Stabilizing Transformation

One promising avenue for hypothesis testing of the WFP is to �nd certain
features of the process in equation 1 which are invariant for the WFP but
need not be for other processes, allowing one to identify processes that are
not well described by the WFP. Since the mean-reverting drift of the WFP,
λ (p−Xt) dt, is linear, any process �uctuating about a stable node would have
qualitatively similar drift near its equilibrium. One could conceivably test for
whether di�erent variables, Xi

t , have di�erent rates of reversion towards their
equilibrium, λi, by noting their autocorrelation time is τ i = 1

λi . Alternatively,
one could look for systems reverting to a spiral node by looking for periodic
signals arising in the power spectrum or the autocovariance function.

Another approach to identifying non-neutral features of data would be to
look at global features of the covariance structure and how they di�er from
that de�ned by Σ. There are many possibilities, but here we consider just
one: a volatility stabilizing transformation, g(Xt) such that the volatility of g
is constant, V[δg|δt] = δt. The SDE for g will be

dgt =

(
λ∇gT (p−Xt) +

1

2
∇gTHX∇g

)
dt+∇gTσ(Xt)dWt (3)

and thus the volatility over some time, δt, will be

V[dgt] = δt
(
∇gTσσT∇g

)
(4)

. Substituting σσT = 2Σ and setting the volatility V[dgt] = δt, we get that a
constant-volatility transformation, g, will satisfy

∇gTΣ∇g =
1

2
. (5)

Using equation 2, this can be can be expanded as

n−1∑
i=1

n∑
j=i+1

XiXj

(
∂g

∂Xi
− ∂g

∂Xj

)2

=
1

2
(6)

.
In the 2-D case, this equation is solved by setting X1 = x and X2 = y (for

aesthetic purposes), yielding

xy

(
∂g

∂x
− ∂g

∂y

)2

=
1

2
(7)

and then making the substitution w = x− y and using y = 1− x to obtain

∂g

∂w
=

1√
2(1− w2)

(8)

which is solved by

g =
1√
2

sin−1(x− y) (9)
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. An empiricist worried about reproducibility might prefer a symmetric function
that doesn't require choosing which species is ′x′ and which species is ′y′. This
can be obtained by noting that (x−y)2 +4xy = 1 and so the symmetric function

gsym =
1√
2

sin−1
√

4xy (10)

is also a solution to equation 7 as both g and gsym can be interpreted as the
non-right angles of a right triangle with sides of length x − y and

√
4xy, and,

since x + y = 1, a hypotenuse of length 1. Thus, since g = π
2 − gsym, if one

angle has constant volatility then so must the other.
By setting X3 = z, the n = 3 case for a constant-volatility transformation

can be written beautifully

xy

(
∂g

∂x
− ∂g

∂y

)2

+ xz

(
∂g

∂x
− ∂g

∂z

)2

+ yz

(
∂g

∂y
− ∂g

∂z

)2

= const. (11)

We see that the conditions for the constant-volatility transformation are always
a special case of the Hamilton-Jacobi equation,

H(x,∇f(x)) = 0

whose solutions can be found by integrating the Hamilton equations

ẋi =
∂H

∂qi

q̇i = −∂H
∂xi

for i = 1, ..., n where qi = ∂g
∂xi

. This connection to Hamilton-Jacobi theory is
not utilized in this chapter, but Burby & Washburne (in prep) have used this
approach to show that the equation de�nes a metric on the simplex with constant
Gaussian curvature, allowing one to �nd Killing vectors that enable construction
of a mapping of the simplex to the sphere that serves as a constant-volatility
transformation. For instance, note that for the 2-D case setting u =

√
x and v =√

y, we have that u2+v2 = 1 - a mapping from the 2-simplex to the 2-sphere that

then enables construction of a constant-volatility transformation sin−1√4xy.
In Burby & Washburne (in prep), we found that there are uncountably many
constant-volatility transformations. Here, I present a small, intuitively useful
subset of those solutions that were found without the Hamilton-Jacobi theory.

Solution to equation 6: 2n volatility-stabilizing transforma-

tions for the WFP

One set of solutions to equation 6 is

g(Xt) = sin−1

(
n∑
i=1

aiX
i
t

)
(12)
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where ai = ±1. The coe�cients {ai}ni=1 de�ne a �grouping� of species by pooling
the n species into two groups, those with ai = 1 and those with ai = −1,
and thus projects the n species WFP into a 2 species WFP and exploits the
solution given above in equation 9 (similarly, equation 10 can be used to de�ne
another complimentary set of solutions). This de�nes 2n non-superimposable

solutions, all of which have constant volatility, lim
δt→0

V[gt+δt−gt]
δt = const. De�ning

∆g = gt+δt− gt, we can then test an arbitrary time series dataset against a null
hypothesis of neutral drift by testing heteroskedasticity of ∆g versus g, Xt, t,
and other state variables of the system. The utility of this method is illustrated
below in the section �Application to Real Data�.

Simulation of WFP

Many scientists confronted with a time-series of a complex adaptive system may
want to explore beyond a few simple, analytically tractable features of the WFP
such as the percent of variance accounted for by the nth principal component,
the distance between two clusters in a di�usion map, the cluster validity index
for a particular clustering algorithm, or myriad other features. To enable these
scientists to have a baseline for comparison, it would be helpful to simulate
surrogate datasets of a WFP such that the null distributions of the scientists'
feature of choice can be obtained from simulation. Two obstacles prevent the
trivial simulation of the WFP. First, derivation of a matrix σ which is numeri-
cally stable (i.e. σ ∈ Rn×d and 1Tσ = 0) and computationally e�cient - simply
using numerical methods for computing the Cholesky or eigen-decomposition of
Σ yield complex-valued matrices σ and do not reliably satisfy 1Tσ = 0. Sec-
ond, ensuring that the simulations remain within the state space, ∆n. In our
paper, we overcome the �rst obstacle with a decomposition of Σ which works
for a large class of what we call �zero-sum matrices�. We overcome the second
obstacle by simulating the log-odds-ratio transform of Xt which maps ∆n into
an unbounded manifold in Rn and which can be inverted to obtain trajectories
of the Wright-Fisher process.

Decomposition of Covariation Matrix

We note that the covariation matrix, Σ, can be decomposed as Σ = PV PT

where P is what we call a �zero-sum matrix� which ensures 1TΣ = 0, and V is
the �competition matrix� - a diagonal matrix whose diagonal elements denote
the nature of competition in a zero-sum community; in the case of the WFP the
diagonal elements of V are all possible unique pairwise combinations of Xi

tX
j
t .

For instance, let n = 3 and for easier notation set X1
t = x, X2

t = y, and X3
t = z,
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the decomposition is 1 1 0
−1 0 1
0 −1 −1

 xy
xz

yz

 1 −1 0
1 0 −1
0 1 −1

 = .

 x(1− x) −xy −xz
−xy y(1− y) −yz
−xz −yz z(1− z)

 (13)

For n = 4 we use the same notation as above in addition to X4
t = w to write

the decomposition as


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1




xy
xz

xw
yz

yw
zw




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

 =


x(1− x) −xy −xz −xw
−xy y(1− y) −yz −yw
−xz −yz z(1− z) −zw
−xw −yw −zw w(1− w)

 (14)

which makes it easy to see the generalization to n-species communities. For an

n-species community, P ∈ Rn×M and V ∈ RM×M where M = n(n−1)
2 . P can

be constructed in blocks as

P =


1Tn−1 0Tn−2 · · · 0

1Tn−2

. . .
...

. . . 0
1

−In−1 −In−2 · · · −1

 (15)

where 1n ∈ Rn is the vector of all 1's, 0n ∈ Rn is the vector of all 0's, and
In ∈ Rn×n is the identity matrix. V is a diagonal matrix whose diagonal is
formed by vectorizing, row-by-row, the upper-triangular elements of XtX

T
t .

This factorization allows us to compute σ directly through σ =
√

2PV 1/2 and
thereby guarantee real-valued noise that could not be guaranteed by numerical
Cholesky or eigen-decomposition of Σ. Furthermore, analytically the Wright-
Fisher Process should have 1TXt = 1 ∀ t and the matrix P , which clearly has
1TP = 0, may reduce the numerical error causing increases or decreases in the
total relative abundance.

We note that this factorization may be useful for other zero-sum covariance
matrices where 1TΣ = 0. In particular, this factorization works for any covari-
ance matrix of simplex-valued processes with non-positive quadratic covariation,
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d[Xi
t , X

j
t ] ≤ 0 for i 6= j. This zero-sum decomposition of the covariance matrix

decomposes the volatility of the WFP in a meaningful way, where the columns
of P containing a 1 and a −1 show that at every time step, δt, the transfer of
relative abundance (or acquisition of market share) from species i to species j

due to neutral drift is ∆ij =

√
2 (δt)Xi

tX
j
tZ , where Z ∼ N(0, 1) is a standard

normal random variable.

Log-odds-ratio transform

The next obstacle in simulating the WFP is the preservation of the bound-
ary. Some work has been done on the boundary preservation of Wright-Fisher
Processes: Milstein et al. [18] constructed a Balanced Implicit Method (BIM),
Moro & Schurz [19] constructed a split-step method, and Danger�eld et al. [6]
combined these two in a Balanced Implicit Split Step (BISS). The approach
developed here seeks to use an invertible transformation to stretch the bounded
state space of the WFP onto an unbounded state space, eliminating the need
for the complex boundary-preserving numerical schemes.

For a process bounded on the simplex, we can use an invertible mapping of
the simplex into an unbounded n−1 dimensional manifold in Rn, simulating the
process on the unbounded manifold, and then inverting to obtain our surrogate
dataset. I de�ne a new vector Ito process, ft, de�ned as the log-ratio transform
of the WFP,

f it = log

(
Xi
t

1−Xi
t

)
. (16)

Applying Ito's lemma, we get the SDE for ft

df it =
(
e
fit/2 + e−

fit/2
)2
[(
λpi −

1

2

)
+

(1− λ)

1 + e−f
i
t

]
dt+∇fTt σ (ft) dWt (17)

where σ (ft) is σ (Xt) = PV
1
2 converted to a function of ft by substituting Xi

t =(
1 + e−f

i
t

)−1

for all i = 1, ..., n . However, the Euler-Maruyama integration and

subsequent of inversion the process in equation 17 does not preserve the simplex
(Figure 1). The warping of trajectories - and the �nal sum of relative abundances
- is independent of the step-size of integration (Figure 1), suggesting that the
error is not due to numerical error from the discretization of the continuous
process. Interestingly, changing the number of species changes the degree of
warping, and decreasing λ causes increased �uctuations about the long-term
average of total relative abundance (Figure 1).

I found that incorporating a dimensionality correction, − 1
2

(
n−2
n

) (
ef
i
t/2 + e−f

i
t/2
)2

dt,

improves the numerical stability of simulations in a reduced error of the total
relative abundance, ε = |

∑
iX

i
t − 1| without a�ecting the covariance matrix of
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Figure 1: Stacked plots of the relative abundances, Xit , obtained by inverting numerical solutions

of equation 17. The solutions leave the bounds of the simplex,
∑
iX

i
t = 1, not due to numerical

error (�rst row), but instead due to some anomalous drift associated with the dimensionality of the

system. Decreasing λ and increasing the number of species, n, increase the deviation of Xt from

the simplex. When n = 2,
∑
iX

i
t ≈ 1, but when n > 2

∑
Xit & 1 and increasingly so for decreasing

λ. Unless the parameters are being varied as speci�ed in the �gure title, n = 5, p = 1
n , λ = 10, and

∆t = 10−4.
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Figure 2: Adding a dimensionality correction to the drift of fit decreases the error in total relative

abundance, ε = |
∑
iX

i
t − 1|. It is not yet proven that the solutions of the dimensionality-corrected

process converge to solutions of the WFP.

Xt obtained by inverting ft. (Figure 2). The SDE for f it becomes

df it =
(
e
fit/2 + e−

fit/2
)2
[(
λpi −

1

2

)
− 1

2

(
n− 2

n

)
+

(1− λ)

1 + e−f
i
t

]
dt+∇fTt σ (ft) dWt

(18)

Parameter Estimation

The parameters λ and p can be estimated by relating the mean and variance
of the WFP. Considering a single species whose dynamics are covered by the
univariate WFP

dXt = λ (p−Xt) dt+
√

2Xt (1−Xt)dWt (19)

we can look at the dynamics of the �rst two moments, mt = E[Xt] and
st = E[X2

t ]. Using Ito's lemma and the Ito Isometry one obtains the system of
ODEs

dmt

dt
= λ (p−mt) (20)

dst
dt

= 2 (1 + λp)mt − 2 (1 + λ) st

which yields the stationary mean, m∞ = limt→∞mt and second moment s∞ =
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limt→∞st

m∞ = p

s∞ =
1 + λp

1 + λ
m∞. (21)

Thus, the stationary mean is µ = p and the stationary variance is given by

v2 = s∞ −m2
∞, yielding v

2 = p(1−p)
1+λ .

These two equations give one way of estimating λ and p from a time-series
dataset: calculate the sample mean of each species {µ̂i}ni=1 and then the sample
variance of a focal species, v̂2

i to get

p̂i = µ̂i

λ̂i =
µ̂i (1− µ̂i)

v̂2
i

− 1 (22)

or one can utilize their full data by getting the sample mean of each species and
sample variance of each species, v̂2

i and use the full dataset to estimate λ̂

λ̂n =
n∑
i=1

λ̂i
n

(23)

Other methods can be developed, such as pooling species until the pool has an
average relative abundance near 0.5, but for this paper I focus on p̂i = µ̂i and
λ̂n given in equation 23.
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Figure 3: Parameter Estimation - plots of true values of the parameter versus their estimates

for 700 solutions to equation 18 integrated over t ∈ [0, 2] and sub-sampled for T ∈ [10, 100, 1000]

timesteps. p = [1, 1.5, 3, 4.5] for every solution and each solution had a unique λ drawn from a

uniform distribution on [10, 50]. (A) The time-average provides an unbiased estimate of p, shown

here as plots of the mean estimator ±2 standard deviations over the 700 replicates. (B) Equations

22 and 23 provide estimates of λ, but appear to be biased over-estimates of the true value of lambda,

possibly due to the dimensionality-correction factor introduced in equation 18.

The last parameter that remains to be estimated is the length of time, Test,
to simulate our surrogate datasets. This can be obtained by noting that the
true autocorrelation time of the WFP is τc = 1

λ , i.e. the autocorrelation
C(Xt, Xt+τc) = e−1. For a dataset with M time points the autocorrelation
function can be interpolated to �nd the time lag, τ with 0 ≤ τ ≤ M , where
C(Xt, Xt+τ ) = e−1. We want a surrogate dataset to be simulated for the same
number of autocorrelation times as our empirical data, i.e. Test

τc
= M

τ , thus the
time-length for the surrogate dataset will be

Test =
M

λτ
(24)

Figure 4 indicates that equation 24 produces a biased estimate of Test, es-
pecially when using the true value of λ instead of its estimate λ1.
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Figure 4: Estimating T and simultaneous inference of λ and T . 3000 values of T were drawn from

a log-uniform distribution, T ∈ [0.1, 10]. Equation 18 with λ = 20, n = 2 and p =

(
1/2
1/2

)
was

numerically integrated over [0, T ] for each value of T . The full trajectory was sub-sampled at

M = 300 time points equally spaced between 0 and T , and from that dataset λ1 was estimated

through equation 22 and then Test was obtained through equation 24.

Application to Real Data

To demonstrate a test of neutrality, I simulated a 15-species neutral community
using the method described below in equation 18, a set of 15 geometric Brownian
motions

d log Y it = µdt+ σdW i
t (25)

and a set of 15 mean-reverting geometric Brownian motions

d logZit = µ
(
z̄i − Zit

)
dt+ σdW i

t (26)

with µ = 15 and σ = 30. Solutions to these equation are later projected onto
the simplex, Y∆

t = Yt

|Yt| , Z
∆
t = Zt

|Zt| . Sample trajectories for these three simplex-

valued Ito processes are plotted in �gure 5 below.
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Figure 5: Testing Neutral Drift. The function g(Xt) : ∆n → R de�ned in equation 12 transforms

a Wright-Fisher trajectory from equation 1 into an Ito process with constant volatility seen in the

Gaussian distribution of ∆g and the homoskedasticity and absence of a trend in scatterplots of

∆g versus g. Processes with di�erent covariance matrices, such as the simplex-projected geomet-

ric Brownian motion of equation 25 or the simplex-projected mean-reverting geometric brownian

motion of equation 26, may have a combination of non-Gaussian distributions of ∆g and trends

or heteroskedasticity in ∆g with respect to other state variables, g, Xt, t. In the bottom panel,

P-value distributions from White homoskedasticity tests of ∆g vs. g are produced from 2,000 ran-

domly drawn groupings, g. Tests of uniformity of this P-value distribution provide a test of the

WFP as a null model for time-series datasets. The P-values are uniformly distributed when the

process is a neutral community of size C = 10, 000 or a WFP, and non-uniformly distributed (with

many low P-values) for the geometric brownian motion and the mean-reverting geometric brownian

motions from �gure 1. The dependence of the P-values, however, causes a high type 1 error rate

for a standard Kolmogorov-Smirnov test; corrrecting for this dependence - either by analytical cal-

culation of the simulation of surrogate datasets to produce a null distribution of KS-statistics - will

allow for more accurate statements of the error rates in this test.
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The fact that there are 2n solutions all with constant volatility can be ex-
ploited to make a test of neutrality that does not require subjective choice of
grouping {ai}. If a process is a WFP and the time-points are equally spaced,
then the P-values for any test of normality or homoskedasticity or trends of ∆g
should be uniformly distributed. Thus, 2n P-values can be generated from any
test of constant volatility of the 2n variance-stabilizing transformations and a
uniform distribution of P-values fails to reject the null hypothesis of neutral
drift. A left-skewed P-value distribution leads to the qualitative rejection of the
WFP as a null model for the time series dataset. The bottom panel of Figure 5
shows the resulting P-value distributions from normality tests of ∆g for 2,000
randomly sampled groupings, g, indicating a uniform distribution of P-values
for the WFP and a correct rejection of the non-neutral drifts plotted above.

Next, I apply these same ∆g homoskedasticity tests time-series datasets
from 372 time points of a male's palm, tongue and gut microbiomes, 130 time
points of a female's palm, tongue and gut microbiomes [2] and 1256 day-end
prices and market capitalization of all companies continuously in the S&P 500
from January 1st 2000 to January 1st 2005 are tested for non-neutral dynamics
(data obtained from CRSP). For these datasets, one could �t species-abundance
distributions as in �gure 6, but I hope to show that the species-abundance
distribution �tting is a much weaker test than the time-series analysis presented
here and are summarized in �gure 7.

Figure 6: Species-abundance distributions for BCI [4], the male tongue and female gut

metagenomes [2] �t using the �untb� and �sads� packages in R. Species-abundance distributions

are just snapshots of communities �uctuating over time - the added information contained in time-

series datasets can be exploited to develop more powerful tests of Neutral Theory.
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Figure 7: Testing neutral theory with ecological and economic time-series datasets. Time-series

datasets from 372 time points of the human microbiome [2] and 1256 time points of share prices

and market capitalization from all companies continuously in the S&P 500 from years 2000-2005

are tested for non-neutral dynamics by White tests on g vs. ∆g for 4,000 randomly drawn variance-

stabilizing transformations, g (using function TestHet in MATLAB by pure quadratic regression of

residuals, ε̂2 = β0 + β1gt + β2g
2
t + e, following linear regression of g on ∆g, ∆gt = γ0 + γ1gt + ε).

(A) Metagenomic samples from a male's tongue qualitatively appear to have non-neutral dynamics

based on the non-uniformity of the P-value distribution from White tests also seen clearly in the

CDF. Alternative models or explanations for stochastic dynamics of this male's tongue microbiome

may gain insight from inspection of scatter plots of g versus ∆g and the coe�cients, β for auxillary

regression in the signi�cantly heteroskedastic cases (P < 0.05). The scatterplots of g versus ∆g

indicate a clear negative slope that persists across many choices of g (this is con�rmed by looking

at the dominance of negative values for γ1) - it's possible that the long time-intervals between

samples require a drift-correction, a hypothesis investigated further in �gure 7 below. Looking for

heteroskedasticity beyond the clear trend in ∆g, we see that for the male tongue, 751 out of the

4,000 choices of g (18%) had P < 0.05 from the White test. 513 out of the 751 cases of signi�cant

heteroskedasticity had β2 > 0, which correspond to a volatility smile of g - high variance of ∆g at

the extreme values of g. (B) Repeating a similar analysis for other microbiomes and for the S&P 500

data lead to various qualitative results ranging from clear rejection of the WFP for the movement

of market weights and relative market cap to more uniformly-distributed P-values for a female's

tongue microbiome. The dependence of the P-values on each other invalidate a Kolmogorov-Smirnov

goodness-of-�t test for concise statements of acceptance/rejection of the WFP in these cases.

The microbiome datasets all appeared to yield a negative relationship be-
tween gt and ∆gt. To test whether or not this could be caused by coarse
sampling of a Wright-Fisher process, values of λ and T were estimated for the
male tongue microbiome by grouping the �rst 200 operational taxonomic units
(OTUs), yielding a mean relative abundance µ̂ = 0.5652, and then applying
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equations 22 and 24 described above. This yielded λ = 18.0063 and interpo-
lating the �rst 5 values of the autocovariance to �nd where τc (in units days)
such that C(Xt, Xt+τc) = e−1, we get an estimate τc = 1.5318 and consequently
Test = 13.4872. 1000 surrogate datasets corresponding to this grouping of the
�rst 200 OTUs was constructed by integrating the 2-species equations 18 and
17 (which are identical for n = 2) over t ∈ [0, Test] using the decomposed σ(ft)
discussed in equations 12-14 and an Euler-Maruyama integration scheme with
∆t = 10−5. No samples left the boundary of the simplex, so there was no need
to re-sample trajectories. The full surrogate time-series was sub-sampled at 372
equally spaced time points and the results are summarized below in �gure 8.

Discussion

Complex adaptive systems change with time and quantifying the uncertainty of
their future states has major implications for investment in and management of
these systems. Ecological communities are composed of many individual organ-
isms competing over the same, �nite, limiting resources, and these communities
turn over as organisms reproduce, die, and migrate. Economic markets are
composed of many companies competing over a �nite amount of capital - mea-
sured in human capital, number of loyal customers, capital stock or investment
capital - and the market shares of these companies changes with time. The
birth & death process underlying the turnover of these ecological and economic
systems has led many authors to hypothesize that ecosystems, economies, and
other complex adaptive systems may be qualitatively similar [11, 17, 1]. The
Wright-Fisher Process is a null model for the turnover of such systems with
birth, death, dispersal, and zero-sum competition over �nite resources. It can
be used as a null model for populations of genes [16], communities of tropical
trees [12] market weights [9, 20] and other systems, and it is a compelling null
hypothesis as neutrality may be a likely occurrence because anything with a
signi�cant competitive disadvantage will be quickly driven extinct, leading to
an evening of competitive abilities over evolutionary timescales [13].

In ecology and population genetics, Neutral Theory has been developed for
communities with zero-sum competition. Clear examples of a zero-sum competi-
tion exist in nature, such as competition over limiting space - as in percent cover
of trees in the Amazon or the amount of land allocated to one of a set of land uses
such as agricultural, residential, open space, national forest, etc. Some commu-
nities or markets may not be strictly zero-sum, but their approximately constant
size might warrant zero-sum competition as an approximation. However, since
Pal [20] has shown that one particular model of market weights can still be a
Wright-Fisher process in its relative abundances despite not having zero-sum
constraints on absolute abundances, the rejection of zero-sum community dy-
namics does no reject the possible neutrality of the species in the community.
Some authors use species-abundance distributions to test for neutral drift, but
since in�nitely many models have the same stationary distributions such tests
may not be the most powerful. In the presence of time-series datasets for eco-
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Figure 8: 1,000 surrogate trajectories were run using the parameter estimation and simulation

tools provided here to investigate whether the negative slope of ∆gt versus gt could arise in neutral

simulations with long time-intervals between samples. In the top-right sub-panel, I've plotted ∆g

versus g for all 1,000 replicates (a total of 372, 000 points), from which we see that under the

null hypothesis of a WFP we can obtain a cloud of points with a negative slope of ∆g vs. g if

the time between samples is long (black dots are from surrogate datasets, red dots are from the

grouping of the male tongue used to parameterize these simulations). Thus, the negative slope

of ∆g versus g seen in �gure 7a is not the noteworth departure from neutrality. However, the

P-values from White homoskedasticity tests are still uniformly distributed even with longer time

intervals between timepoints. Since the trajectories simulated here are independent, the P-values

in the White tests are also independent (since there is only one informative volatility-stabilizing

transformation for each trajectory), and a KS test can be used to suggest that the CDF is in fact

uniformly distributed with P = 0.3085. Further analysis of the auxillary regression shows that 20

out of 42 of the trajectories yielding signi�cant heteroskedasticity had β2 > 0. The 20 out of 42

β2 > 0 in the WFP is signi�cantly di�erent from the 513 out of 751 in the male tongue dataset

(P = 9.9 × 10−9). This provides more evidence that the non-neutrality of the male tongue may

come from a tendency for the community to become more volatile when it is farther from its mean;

this could be veri�ed by constructing alternative models with hypervariable rare & abundant species

or analogs of stochastic volatility models which try to explain a similar volatility smile in �nancial

data.
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logical or economic systems, one might hope to use the added information from
the time series to construct stronger neutrality tests.

In this chapter, I provided two main tools for hypothesis-testing of neutral
drift in time-series ecological and economic datasets: volatility-stabilizing trans-
formations, and a means for the fast and reliable simulation of WFP surrogate
datasets whose parameters can be estimated from the data. However, more
work needs to be done to make these tools accessible to researchers as reliable
and user-friendly packages in R and MATLAB. For the constant-volatility tests,
the multiple-hypothesis-testing framework of testing the uniformity of P-values
from homoskedasticity/constant-volatility tests for the multiple choices of g re-
quires a test-statistic, such as the Kolmogorov-Smirnov test statistic, whose
null distribution is known. For the simulations, the viability of higher-order
integration schemes and adaptive algorithms for adjusting the time-window of
integration could be explored to develop more reliable simulators. For parameter
estimation, the clear bias in the estimates of λ and T must be corrected, which
may be resolved using techniques from the literature on parameter estimation
in stochastic di�erential equations.

Ultimately, though, the rejection of a null hypothesis is only as compelling
as the null hypothesis. The WFP has been proposed as a null model for many
systems, but repeated rejection of the WFP may render it obsolete. Time-
series datasets can provide more powerful tests and enable the swift rejection
of the WFP along with the construction of more suitable alternative models
by careful assessment of how our data di�er from neutrality - e.g. by having
hyper- or hypo-variable rare species or particular taxonomic groupings (e.g. C3
or C4 grasses) which yield particularly non-neutral dynamics. Some alterna-
tive models already exist or are in development, such as the Atlas model [8]
or urn processes with frequency-dependent stabilizing mechanisms analogous to
Janzen-Connell e�ects ([14, 5], Socolar & Washburne, in prep), and comparison
of patterns in gt vs. ∆gt plots like �gures 7 and 8 will be a stepping stone towards
the development and motivation of more compelling alternative models. The
production of reliable models of the stochastic evolution of complex-adaptive
systems can enable better forecasts of species richness and community viability
in ecology to enable better reserve design or �sheries management; it can enable
the construction of portfolios to achieve particular goals balancing risk and re-
turn [8]; it can allow the development and clinical trial of more potent probiotics
through a better understanding of the pharmacokinetics of probiotics.
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